DOI QR코드

DOI QR Code

Induction of Apaopotis by Water Extract of Cordyceps militaris (WECM) in Human Hepatocellular Carcinoma HepG2 Cells.

동충하초 열수 추출물에 의한 인체 간암세포 성장억제 및 apoptosis 유발에 관한 연구

  • Kim, Kyung-Mi (Department of Biology, Pusan National University) ;
  • Park, Cheol (Department of Biology, Pusan National University) ;
  • Choi, Yung-Hyun (Department of Biochemistry, Dongeui University College of Oriental Medicine and Department of Biomaterial Control, Dongeui University) ;
  • Lee, Won-Ho (Department of Biology, Pusan National University)
  • 김경미 (부산대학교 자연과학대학 생물학과) ;
  • 박철 (부산대학교 자연과학대학 생물학과) ;
  • 최영현 (동의대학교 한의과대학 생화학교실 및 대학원 바이오물질제어학과) ;
  • 이원호 (부산대학교 자연과학대학 생물학과)
  • Published : 2008.06.30

Abstract

Cordyceps militaris, the Chinese medicinal fungal genus Cordyceps, is reported to possess many pharmacological activities including immunological stimulating, anti-cancer, anti-virus and anti-infection activities. However, the molecular mechanisms of C. militaris on biochemical actions in cancer have not been clearly elucidated yet. In the present study, we investigated the anti-proliferative activity of the water extract of C. militaris (WECM) in human hepatocellular carcinoma HepG2 cells. It was found that WECM could inhibit the cell growth in a dose-dependent manner, which was associated with morphological changes and apoptotic cell death such as formation of apoptotic bodies and increased populations of apoptotic sub-G1 phase. Apoptotic cell death of HepG2 cells by WECM was connected with a up-regulation of pro-apoptotic Bax expression, tumor suppressor p53 and cyclin-dependent kinase inhibitor p21 (WAF1/CIP1). In addition, WECM treatment induced the proteolytic activation of caspase-3 and a concomitant degradation and/or inhibition of poly (ADP-ribose) polymerase (PARP), ${\beta}-catenin$ and phospholipase $(PLC)-{\gamma}1$ protein. Furthermore, caspase-3 inhibitor, z-DEVD-fmk, significantly inhibited WECM-induced apoptosis demonstrating the important role of caspase-3 in the observed cytotoxic effect. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of C. militaris.

본 연구에서는 전통 민간의학에서 많이 사용되는 동충하초(C. militaris)의 항암 작용에 관한 근거 자료의 제시를 위하여 동충하초 열수 추출물(WECM)의 항암 기전 해석을 시도하였다. 이를 위하여 HepG2 인체 간암세포를 사용하였으며, WECM의 처리에 의하여 HepG2 세포의 증식은 처리 농도의 증가에 따라 매우 억제되었다. WECM 처리에 의한 HepG2 세포의 증식 억제는 암세포의 심한 형태적 변형을 수반하였고, 이는 apoptosis 유도와 연관성이 있음을 DAPI 염색을 통한 apoptotic body 출현의 증가 및 flow cytometry 분석에 의한 sub-G1 기에 속하는 세포 빈도의 증가로 확인하였다. WECM 처리에 의한 HepG2 세포의 증식 억제는 또한 종양 억제 유전자 p53 및 CDKI p21의 발현 증가와도 연관성이 있음을 알 수 있었다. WECM 처리에 의한 apopotosis 유도에서 pro-apoptotic 인자인 Bax의 발현이 전사 및 번역 수준에서 매우 증가하였으며, caspase-3의 활성이 매우 높게 증가되었다. 특히 caspase-3 특이적 억제제인 z-DEVD-fmk로 caspase-3의 활성을 인위적으로 차단시켰을 경우, WECM에 의한 HepG2 세포의 apoptosis 유발에 caspase-3이 중심적인 역할을 하고 있음을 알 수 있었다. 본 연구 결과는 WECM의 생화학적 항암기전 해석을 이해하고 향후 수행될 추가 실험을 위한 기초 자료로서 그 가치가 매우 높은 것으로 생각된다.

Keywords

References

  1. Allen, R. T., M. W. Cluck and D. K. Agrawal. 1998. Mechanisms controlling cellular suicide: role of Bcl-2 and caspases. Cell Mol. Life Sci. 54, 427-445 https://doi.org/10.1007/s000180050171
  2. Bae, S. S., D. K. Perry, Y. S. Oh, J. H. Choi, S. H. Galadari, T. Ghayur, S. H. Ryu, Hannun, Y. A. and P. G. Suh. 2000. Proteolytic cleavage of phospholipase C-${\gamma}$1 during apoptosis in Molt-4 cells. FASEB J. 14, 1083-1092 https://doi.org/10.1096/fasebj.14.9.1083
  3. Brugarolas, J., K. Moberg, S. D. Boyd, Y. Taya, T. Jacks and J. A. Lees. 1999. Inhibition of cyclin-dependent kinase 2 by p21 is necessary for retinoblastoma protein-mediated G1 arrest after ${\gamma}$-irradiation. Proc. Natl. Acad. Sci. USA 96, 1002-1007 https://doi.org/10.1073/pnas.96.3.1002
  4. Chiou, W. F., P. C. Chang, C. J. Chou and C. F. Chen. 2000. Protein constituent contributes to the hypotensive and vasorelaxant activities of Cordyceps sinensis. Life Sci. 66, 1369-1376 https://doi.org/10.1016/S0024-3205(00)00445-8
  5. Choi, S. B., C. H. Park, M. K. Choi, D. W. Jun and S. Park. 2004. Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats. Biosci. Biotechnol. Biochem. 68, 2257-2264 https://doi.org/10.1271/bbb.68.2257
  6. Cohen, G. M. 1997. Caspases: the executioners of apoptosis. Biochem. J. 326, 1-16 https://doi.org/10.1042/bj3260001
  7. Ding, Z., R. E. Parchment, P. M. LoRusso, J. Y. Zhou, J. Li, T. S. Lawrence, Y. Sun and G. S. Wu. 2001. The investigational new drug XK469 induces G(2)-M cell cycle arrest by p53-dependent and -independent pathways. Clin. Cancer Res. 7, 3336-3342
  8. Donovan, M. and T. G. Cotter. 2004. Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. Biochim. Biophys. Acta 1644, 133-147 https://doi.org/10.1016/j.bbamcr.2003.08.011
  9. Du, C., M. Fang, Y. Li, L. Li and X. Wang. 2000. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42 https://doi.org/10.1016/S0092-8674(00)00008-8
  10. Du, J., G. G. Chen, A. C. Vlantis, P. K. Chan, R. K. Tsang and C. A. van Hasselt. 2004. Resistance to apoptosis of HPV 16-infected laryngeal cancer cells is associated with decreased Bak and increased Bcl-2 expression. Cancer Lett. 205, 81-88 https://doi.org/10.1016/j.canlet.2003.09.035
  11. Earnshaw, W. C., L. M. Martins and S. H. Kaufmann. 1999. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383-424 https://doi.org/10.1146/annurev.biochem.68.1.383
  12. el-Deiry, W. S., J. W. Harper, P. M. O'Connor, V. E. Velculescu, C. E. Canman, J. Jackman, J. A. Pietenpol, M. Burrell, D. E. Hill, Y. Wang, K. G. Wiman, W. E. Mercer, M. B. Kastan, K. W. Kohn, S. J. Elledge, K. W. Kinzler and B. Vogelstein. 1994. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 54, 1169-1174
  13. Fischer, U., R. U. Jänicke and K. Schulze-Osthoff. 2003. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ. 10, 76-100 https://doi.org/10.1038/sj.cdd.4401160
  14. Fukuda, K. 1999. Apoptosis-associated cleavage of $\beta$-catenin in human colon cancer and rat hepatoma cells. Int. J. Biochem. Cell Biol. 31, 519-529 https://doi.org/10.1016/S1357-2725(98)00119-8
  15. Hengst, L., U. Göpfert, H. A. Lashuel and S. I. Reed. 1998. Complete inhibition of Cdk/cyclin by one molecule of p21 (Cip1). Genes Dev. 12, 3882-3888 https://doi.org/10.1101/gad.12.24.3882
  16. Johnson, J. P. 1999. Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastasis Rev. 18, 345-357 https://doi.org/10.1023/A:1006304806799
  17. Kaufmann, S. H., S. Desnoyers, Y. Ottaviano, N. E. Davidson and G. G. Poirier. 1993. Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53, 3976-3985
  18. Kim, M. J., E. Kim, S. H. Ryu and P. G. Suh. 2000. The mechanism of phospholipase C-${\gamma}$1 regulation. Exp. Mol. Med. 32, 101-109 https://doi.org/10.1038/emm.2000.18
  19. Kroemer, G. 1997. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat. Med. 3, 614-620 https://doi.org/10.1038/nm0697-614
  20. Lazebnik, Y. A., S. H. Kaufmann, S. Desnoyers, G. G. Poirier and W. C. Earnshaw. 1994. Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346-347 https://doi.org/10.1038/371346a0
  21. Li, S. P., F. Q. Yang and K. W. Tsim. 2006. Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J. Pharm. Biomed. Anal. 41, 1571-1584 https://doi.org/10.1016/j.jpba.2006.01.046
  22. Myklebust, J. H., H. K. Blomhoff, L. S. Rusten, T. Stokke and E. B. Smeland. 2002. Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34 (+) hematopoietic progenitor cells. Exp. Hematol. 30, 990-1000 https://doi.org/10.1016/S0301-472X(02)00868-8
  23. Ng, T. B. and H. X. Wang. 2005. Pharmacological actions of Cordyceps, a prized folk medicine. J. Pharm. Pharmacol. 57, 1509-1519 https://doi.org/10.1211/jpp.57.12.0001
  24. Olmeda, D., S. Castel, S. Vilaro and A. Cano. 2003. $\beta$- catenin regulation during the cell cycle: implications in G2/M and apoptosis. Mol. Biol. Cell 14, 2844-2860 https://doi.org/10.1091/mbc.E03-01-0865
  25. Polakis, P. 2001. More than one way to skin a catenin. Cell 105, 563-566 https://doi.org/10.1016/S0092-8674(01)00379-8
  26. Reed, J. C. 1998. Bcl-2 family proteins. Oncogene 17, 3225-3236 https://doi.org/10.1038/sj.onc.1202591
  27. Rhee, S. G. and Y. S. Bae. 1997. Regulation of phosphoinositide- specific phospholipase C isozymes. J. Biol. Chem. 272, 15045-15048 https://doi.org/10.1074/jbc.272.24.15045
  28. Rossé, T., R. Olivier, L. Monney, M. Rager, S. Conus, I. Fellay, B. Jansen and C. Borner. 1998. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391, 496-499 https://doi.org/10.1038/35160
  29. Schreiber, V., F. Dantzer, J. C. Ame, and G. de Murcia. 2006. Poly (ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell Biol. 7, 517-528 https://doi.org/10.1038/nrm1963
  30. Suzuki, A., H. Kawano, M. Hayashida, Y. Hayasaki, Y. Tsutomi and K. Akahane. 2000. Procaspase 3/p21 complex formation to resist fas-mediated cell death is initiated as a result of the phosphorylation of p21 by protein kinase A. Cell Death Differ. 7, 721-728 https://doi.org/10.1038/sj.cdd.4400706
  31. Vegran, F., R. Boidot, C. Oudin, J. M. Riedinger and S. Lizard-Nacol. 2005. Implication of alternative splice transcripts of caspase-3 and survivin in chemoresistance. Bull. Cancer 92, 219-226
  32. Vogelstein, B., D. Lane and A. J. Levine. 2000. Surfing the p53 network. Nature 408, 307-310 https://doi.org/10.1038/35042675
  33. Wijnhoven, B. P., W. N. Dinjens and M. E. Pignatelli. 2000. E-cadherin-catenin cell-cell adhesion complex and human cancer. Br. J. Surg. 87, 992-1005 https://doi.org/10.1046/j.1365-2168.2000.01513.x
  34. Won, S. Y. and E. H. Park. 2005. Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. J. Ethnopharmacol. 96, 555-561 https://doi.org/10.1016/j.jep.2004.10.009
  35. Yang, H. L., J. X. Pan, L. Sun, and S. C. Yeung. 2003. p21 Waf-1 (Cip-1) enhances apoptosis induced by manumycin and paclitaxel in anaplastic thyroid cancer cells. J. Clin. Endocrinol. Metab. 88, 763-772 https://doi.org/10.1210/jc.2002-020992
  36. Yang, L. Y., W. J. Huang, H. G. Hsieh and C. Y. Lin. 2003. H1-A extracted from Cordyceps sinensis suppresses the proliferation of human mesangial cells and promotes apoptosis, probably by inhibiting the tyrosine phosphorylation of Bcl-2 and Bcl-XL. J. Lab. Clin. Med. 141, 74-83 https://doi.org/10.1067/mlc.2003.6
  37. Yu, R., L. Song, Y. Zhao, W. Bin, L. Wang, H. Zhang, Y. Wu, W. Ye and X. Yao. 2004. Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris. Fitoterapia 75, 465-472 https://doi.org/10.1016/j.fitote.2004.04.003
  38. Yu, R., L. Wang, H. Zhang, C. Zhou and Y. Zhao. 2004. Isolation, purification and identification of polysaccharides from cultured Cordyceps militaris. Fitoterapia 75, 662-666 https://doi.org/10.1016/j.fitote.2004.06.010

Cited by

  1. Inhibitory Effect of Red Bean (Phaseolus angularis) Hot Water Extracts on Oxidative DNA and Cell Damage vol.24, pp.2, 2011, https://doi.org/10.7732/kjpr.2011.24.2.130
  2. Inhibitory Effect of Extract from Acanthocoris sordidus on Oxidative Damage vol.24, pp.10, 2014, https://doi.org/10.5352/JLS.2014.24.10.1078
  3. Effect of Hydropsyche kozhantschikovi Extracts on Oxidative Stress vol.23, pp.1, 2013, https://doi.org/10.5352/JLS.2013.23.1.31
  4. In vitro Anticancer Effect of Salt on HepG2 Human Hepatocellular Carcinoma Cells vol.45, pp.1, 2016, https://doi.org/10.3746/jkfn.2016.45.1.137