• 제목/요약/키워드: anode water

검색결과 286건 처리시간 0.023초

연료개질기를 연계한 고체 산화물 연료전지 시스템의 운전 특성에 관한 연구 (A Study on Operation Characteristics of Planar-type SOFC System Integrated with Fuel Processor)

  • 지현진;임성광;유영성;배중면
    • 대한기계학회논문집B
    • /
    • 제30권8호
    • /
    • pp.731-740
    • /
    • 2006
  • The solid oxide fuel cell (SOFC) is expected to be a candidate for distributed power sources in the next generation, due to its high efficiency and high-temperature waste heat utilization. In this study, the 5-cell SOFC stack was operated with pure hydrogen or reformed gas at anode side and air at cathode side. When stack was operated with diesel and methane ATR reformer, the influence of the $H_2O/C,\;O_2/C$ and GHSV on performance of stacks have been investigated. The result shows that the cell voltage was decreased with the increase of $H_2O/C$ and $O_2/C$ due to the partial pressure of fuel and water, and cell voltage was more sensitive to $O_2/C$ than $H_2O/C$. Next, the dynamic model of SOFC system included with ATR reformer was established and compared with experimental data. Based on dynamic model, the operation strategy to optimize SOFC-Reformer system was suggested and simulated.

해수 내 아크 아연 용사코팅 층의 전기화학적 특성 (Electrochemical Characteristics of Arc Zn Thermal Spray Coating Layer in Sea Water)

  • 박일초;서광철;이경우;김성종
    • 한국표면공학회지
    • /
    • 제48권6호
    • /
    • pp.343-348
    • /
    • 2015
  • In this paper, arc Zn thermal spray coating was carried out on the SS400 steel, and then various electrochemical characteristics and surface damage behavior of Zn thermal spray coating layer were analyzed. As the results, the potential of Zn thermal spray coating layer presented driving voltage above 300 mV compare to that of SS400 steel. The passivity characteristic in anodic polarization curve was not presented. It was adequate to as sacrificial anode material. In the surface damage after galvanostatic experiments, uniform corrosion tendency of Zn thermal spray coating layer was clearly observed with acceleration of the dissolution reaction. In conclusion, Zn thermal spray coating could be determined to represent the corrosion protection effect by stable sacrificial anodic cathodic protection method in seawater because it had sufficient driving voltage and uniform corrosion damage tendency for the SS400 steel.

Al-황동의 응력부식균열 특성에 미치는 인가전위의 영향 (Effect of Impressed Potential on the SCC of Al-Brass)

  • 정해규;임우조
    • 한국해양공학회지
    • /
    • 제18권1호
    • /
    • pp.69-74
    • /
    • 2004
  • In general, the protection method of Shell and Tube Type heat exchanger for a vessel has been applied as a sacrificial anode, which is attached at the inner side of the shell. However, this is an insufficient protection method for tube. Therefore, a more suitable method, such as the impressed current cathodic protection for tube protection, is required. Al-brass is the raw material of tubes for heat exchanger of a vessel where seawater is used for cooling the water. It has a high level of heat conductivity, excellent mechanical properties, and a high level of corrosion resistance, due to a cuprous oxide (Cu$_2$O) layer against th seawater. However, in actuality, it has been reported that Al-brass tubes for heat exchanger of a vessel can produce local corrosion, such as stress corrosion cracking (SCC). This paper studied the effect of impressed potential on the stress corrosion cracking of Al-brass for impressed current cathodic protection in 3.5% NaCl +0.1% NH$_4$OH solution, under flow by a constant displacement tester. Based on the test results, the latent time of SCC, stress corrosion crack propagation, and the dezincification phase of Al-brass are investigated.

직접에탄올 연료전지의 운전조건에 관한 연구 (A Study on an Operating Conditions for the Direct Ethanol Fuel Cell)

  • 김영춘;구본국;장문국;지학배;한상보;박재윤
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2076-2082
    • /
    • 2011
  • The goal of this paper is to find an operating conditions of the single direct ethanol fuel cell such as the cell temperature, and flow rates of ethanol and oxygen. To investigate the output characteristics, the electrical current increased from 0[A] with interval of 0.001[A] every 2[s], and the cell voltage was increased until the voltage became 0.05[V]. Related to the effect of the cell temperature, the output characteristics both voltage and power were increased upto 80[$^{\circ}C$] according to the increase of the current density, but those were decreased over that temperature. In addition, the optimal flow rate of ethanol in anode was identified as of 2[mL/min] due to the dependence of generation rate such as the hydrogen ion and electron. And the flow rate of oxygen in cathode was desirable to about 300[sccm/min], it might be affected by the chemical reaction rate of the water formation among hydrogen ion, electron, and oxygen. Consequently, the fundamental conditions were identified in this work, and it will be carried out to find the best conditions of membrane by the effect of the plasma surface treatment, and the effect of other catalysts except for a platinum.

Observations of Pulsed Bi-polar Discharges in Saline Solutions with Pin to Plate Electrodes

  • Shin, Bhum Jae;Seo, Jeong-Hyun;Collins, George J.
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.2011-2016
    • /
    • 2018
  • In this study, we have been investigated pin to plate pulsed bi-polar discharges in saline solutions, where bubble generation occurs. We integrate basic I-V-t electrical characteristics with the ICCD shadowgraph images, and finally instant and time averaged I-V waveforms. We observed that the bubble formation phase dynamics is quite different corresponding to the polarity applied to the pin electrode. When the pin electrode is a cathode, the bubble tends to be periodically detached from the pin electrode and the numerous tiny voltage spikes occur related to the electron emission from a pin cathode casing via, we judge from, direct dissociation of water molecules by energetic electrons. On the contrary, the bubble tends to stick to the pin electrode, when the pin electrode is anode; the bubble grows in size throughout the pulse duration. The dynamic electrical characteristics relative to the applied polarity of a pin electrode are presented and discussed by analysis of time averaged I-V waveforms.

전도성 고분자를 전극으로 한 유기 전기발광 소자의 제작 및 특성 (Fabrication and Characteristics of Organic EL Devices using Conducting Polymer as an Electrode)

  • 이광연;김영관;권오관;손병청;김옥병
    • 한국응용과학기술학회지
    • /
    • 제16권4호
    • /
    • pp.323-327
    • /
    • 1999
  • A water-soluble conducting polymer (CPP400 Paste) containing a derivative of polythiophene with several dopant was investigated as an anode material for organic electroluminescent devices. The device of ITO/CPP 400 Paste/TPD/$Alq_3$/Li:Al was fabricated, where CPP 400 Paste films were prepared by spin coating and TPD and $Alq_3$, films were prepared by vacuum evaporation. It was found that the turn-on voltage, current density, and luminance of the devices were dependent upon the thickness of CPP 400 Paste film in the Electroluminescent and current-voltage characteristics of the devices. This phenomena were explained by the energy level diagram of the device with the energy levels of the CPP400 Paste obtained by cyclic voltammetric method.

윤활유가 침지된 나노구조 전기아연도금층의 젖음성 (Wettability of Lubricant-Impregnated Electroplated Zinc Surface with Nanostructure)

  • 정해창;김왕렬;정찬영;이정훈
    • 한국표면공학회지
    • /
    • 제52권1호
    • /
    • pp.37-42
    • /
    • 2019
  • Electrodeposited zinc layer is widely used as a sacrificial anode for a corrosion protection of steel. In this study, we modified the surface of electrodeposited zinc to have a hydrophobicity, which shows various advanced functionalities, such as anti-corrosion, anti-biofouling, anti-icing and self-cleaning, due to its repellency to liquids. Superhydrophobicity was realized on electrodeposited zinc layer with a hydrothermal treatment, creating nanostructures on the surface, and following Teflon coating. The superhydrophobic surface shows a great repellency to water with high surface tension, while liquid droplets with low surface tension easily adhered on the superhydrophobic surface. However, immiscible lubricant-impregnated superhydrophobic surface shows a great repellency to various liquids, regardless of their surface tension. Therefore, it is expected that the lubricant-impregnated surface can be an alternative of superhydrophobic surface, which have a drawback for some liquids with a low surface tension.

Parametric study for enhanced performance of Cu and Ni electrowinning

  • Kim, Joohyun;Kim, Han S.;Bae, Sungjun
    • Membrane and Water Treatment
    • /
    • 제10권3호
    • /
    • pp.201-206
    • /
    • 2019
  • In this study, we performed an electrowinning process for effective removal of metals (Cu and Ni) in solution and their recovery as solid forms. A complete removal of Cu and Ni (1,000 mg/L) was observed during four times recycling test, indicating that our electrowinning system can ensure the efficient metal removal with high stability and durability. In addition, we investigated effect of operation parameters (i.e., concentration of boric acid only for Ni, variation of pH, concentration of electrolyte ($H_2SO_4$), and cell voltage) on the efficiency of metal removal (Cu and Ni) during the electrowinning. The addition of boric acid significantly enhanced removal efficiency of Ni as the concentration of boric acid increased up to 10 g/L. Compared to negligible pH effect (pH 1, 2, and 4) on the Cu removal, we observed the increase in removal efficiency of Ni as the pH increased from 1 to 4. The electrolyte concentration did not significantly influence the removal of Cu and Ni in this study. We also obtained great removal rates of Cu and Ni at 2.5 V and 4.0 V, which were much faster than those at lower voltages. Finally, almost 99% of each Cu and Ni (1,000 mg/L) was selectively removed from the mixture of metals by adjusting pH and addition of boric acid after the completion of Cu removal. The findings in this study can provide a fundamental knowledge about effect of important parameters on the efficiency of metal recovery during the electrowinning.

Galvanic Corrosion Between Component Parts of Aluminum Alloys for Heat Exchanger of Automobile

  • Y. R. Yoo;D. H. Kim;G. B. Kim;S. Y. Won;S. H. Choi;Y. S. Kim
    • Corrosion Science and Technology
    • /
    • 제22권5호
    • /
    • pp.322-329
    • /
    • 2023
  • There are a variety of heat exchangers used in automobiles, such as shell and tube heat exchangers, double tube heat exchangers, and plate heat exchangers. Most of them are water-cooled to prevent engine overheating. There have been reports of corrosion damage to these heat exchangers due to continuous wetting caused by external temperature differences, road pollutants, and snow removal. In addition, galvanic corrosion, which occurs when two dissimilar materials come into contact, has been identified as a major cause. In this study, corrosion characteristics and galvanic corrosion behavior of Al alloy (AA3003, AA4045 and AA7072) used in automobile heat exchangers were analyzed. Effective clad materials for heat exchanger tubes and fins were also evaluated. It was found that AA7072 should be applied as the cladding material for fin AA3003 and that AA4045 was suitable as a cladding material for tube AA3003 because this clad materials application was the most effective clad design to delay the occurrence of pinhole in the tube. Main factors influencing galvanic corrosion dissolution were found to be galvanic corrosion potential difference and galvanic corrosion current density.

수계전해질기반 차세대 금속이온전지 기술 (Technologies for Next-Generation Metal-Ion Batteries Based on Aqueous Electrolytes)

  • 신동옥;최재철;강석훈;박영삼;이영기
    • 전자통신동향분석
    • /
    • 제39권1호
    • /
    • pp.83-94
    • /
    • 2024
  • There have been continuous requirements for developing more reliable energy storage systems that could address unsolved problems in conventional lithium-ion batteries (LIBs) and thus be a proper option for large-scale applications like energy storage system (ESS). As a promising solution, aqueous metal-ion batteries (AMIBs) where water is used as a primary electrolyte solvent, have been emerging owing to excellent safety, cost-effectiveness, and eco-friendly feature. Particularly, AMIBs adopting mutivalence metal ions (Ca2+, Mg2+, Zn2+, and Al3+) as mobile charge carriers has been paid much attention because of their abundance on globe and high volumetric capacity. In this research trend review, one of the most popular AMIBs, zinc-ion batteries (ZIBs), will be discussed. Since it is well-known that ZIBs suffer from various (electro) chemical/physical side reactions, we introduce the challenges and recent advances in the study of ZIBs mainly focusing on widening the electrochemical window of aqueous electrolytes as well as improving electrochemical properties of cathode, and anode materials.