• Title/Summary/Keyword: and tilt features

Search Result 59, Processing Time 0.022 seconds

Face Recognition using AdaBoost Algorithm and Development of Surveillance Robot for a Ship (AdaBoost 알고리즘을 이용한 얼굴인식 및 선박용 감시로봇 개발)

  • Go, Seok-Jo;Park, Jang-Sik;Jang, Yong-Seo;Choi, Moon-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.219-225
    • /
    • 2008
  • This study developed a surveillance robot for a ship. The developed robot consists of ultrasonic sensors, an actuator, a lighting fixture and a camera. The ultrasonic sensors are used to avoid collision with obstacles in the environment. The actuator is a servo motor system. The developed robot has four drive wheels for driving. The lighting fixture is used to guide the robot in a dark environment. To transmit an image, a camera with a pan moving and a tilt moving is equipped on the upper part of the robot. AdaBoost algorithm trained with 15 features, is used for face recognition. In order to evaluate the face recognition of the developed robot, experiments were performed.

  • PDF

Tiny Drone Tracking with a Moving Camera (동적 카메라 환경에서의 소형 드론 추적 방법)

  • Son, Sohee;Jeon, Jinwoo;Lee, Injae;Cha, Jihun;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.802-812
    • /
    • 2019
  • With the rapid development in the field of unmanned aerial vehicles(UAVs) and drones, higher request to development of a surveillance system for a drone is putting forward. Since surveillance systems with fixed cameras have a limited range, a development of surveillance systems with a moving camera applicable to PTZ(Pan-Tilt-Zoom) cameras is required. Selecting the features for object plays a critical role in tracking, and the object has to be represented by their shapes or appearances. Considering these conditions, in this paper, an object tracking method with optical flow is introduced to track a tiny drone with a moving camera. In addition, a tracking method combined with kalman filter is proposed to track continuously even when tracking is failed. Experiments are tested on sequences which have a target from the minimal 12 pixels to the maximal 56337 pixels, the proposed method achieves average precision of 175% improvement. Also, experimental results show the proposed method tracks a target which has a size of 12pixels.

Achievable Sum Rate Analysis of ZF Receivers in 3D MIMO Systems

  • Li, Xingwang;Li, Lihua;Xie, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1368-1389
    • /
    • 2014
  • Three-dimensional multiple-input multiple-output (3D MIMO) and large-scale MIMO are two promising technologies for upcoming high data rate wireless communications, since the inter-user interference can be reduced by exploiting antenna vertical gain and degree of freedom, respectively. In this paper, we derive the achievable sum rate of 3D MIMO systems employing zero-forcing (ZF) receivers, accounting for log-normal shadowing fading, path-loss and antenna gain. In particular, we consider the prevalent log-normal model and propose a novel closed-form lower bound on the achievable sum rate exploiting elevation features. Using the lower bound as a starting point, we pursue the "large-system" analysis and derive a closed-form expression when the number of antennas grows large for fixed average transmit power and fixed total transmit power schemes. We further model a high-building with several floors. Due to the floor height, different floors correspond to different elevation angles. Therefore, the asymptotic achievable sum rate performances for each floor and the whole building considering the elevation features are analyzed and the effects of tilt angle and user distribution for both horizontal and vertical dimensions are discussed. Finally, the relationship between the achievable sum rate and the number of users is investigated and the optimal number of users to maximize the sum rate performance is determined.

The Structural Characteristics of the Ankle Joint Complex and Declination of the Subtalar Joint Rotation Axis between Chronic Ankle Instability (CAI) Patients and Healthy Control (만성 발목 불안정성(CAI) 환자와 건강 대조군 간의 발목 관절 복합체 구조적 특징과 목말밑 관절 회전 축 기울기)

  • Kim, Chang Young;Ryu, Ji Hye;Kang, Tae Kyu;Kim, Byong Hun;Lee, Sung Cheol;Lee, Sae Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.61-70
    • /
    • 2019
  • Objective: This study aimed to investigate the characteristics of the declination of the subtalar joint rotation axis and the structural features of the ankle joint complex such as rear-foot angle alignment and ligament laxity test between chronic ankle instability (CAI) patients and healthy control. Method: A total of 76 subjects and CAI group (N=38, age: $23.11{\pm}7.63yrs$, height: $165.67{\pm}9.54cm$, weight: $60.13{\pm}11.71kg$) and healthy control (N=38, age: $23.55{\pm}7.03yrs$, height: $167.92{\pm}9.22cm$, weight: $64.58{\pm}13.40kg$) participated in this study. Results: The declination of the subtalar joint rotation axis of the CAI group was statistically different from healthy control in both sagittal slope and transverse slope. The rear-foot angle of CAI group was different from a healthy control. Compared to healthy control, they had the structure of rear-foot varus that could have a high occurrence rate of ankle varus sprain. CAI group had loose ATFL and CFL compared to the healthy control. Conclusion: The results of this study showed that the deviation of the subtalar joint rotation axis and the structural features of the ankle joint complex were different between the CAI group and the healthy control and this difference is a meaningful factor in the occurrence of lateral ankle sprains.

Mechanical Design for an Optical-telescope Assembly of a Satellite-laser-ranging System

  • Do-Won Kim;Sang-Yeong Park;Hyug-Gyo Rhee;Pilseong Kang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.419-427
    • /
    • 2023
  • The structural design of an optical-telescope assembly (OTA) for satellite laser ranging (SLR) is conducted in two steps. First, the results of a parametric study of the major design variables (e.g. dimension and shape) of the OTA part are explained, and the detailed structural design of the OTA is derived, considering the design requirements. Among the structural-shape concepts of various OTAs, the Serrurier truss concept is selected in this study, and the collimation of the telescope according to the design variables is extensively discussed. After generating finite-element models for different structural shapes, self-gravity analyses are performed. To minimize the deflection and tilt of the mirror and frame for the OTA under the limited design requirements, a parametric study is conducted according to design variables such as the shapes of the upper and lower struts and the spider vane. The structural features found in the parametric study are described. Finally, the OTA structure is designed in detail to maintain the optical alignment by balancing the gravity deflections of the upper and lower trusses using the optimal combination of the parameters. Additionally, thermal analysis of the optical telescope design is evaluated.

Chemical Structural Effects of Polyimides on the Alignment and Electro-optical Properties of Liquid Crystal Cells

  • Paek, Sang-Hyon;Wonseok Dong
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.251-257
    • /
    • 2004
  • The nature of the nematic liquid crystal (LC) alignment induced by the rubbed polyimide (PI) alignment layers (ALs) and the electro-optical (EO) properties of the LC cells are expected to depend on the chemical and physical features of the PI. By employing five pyromellitic dianhydride (PMDA)-type PIs having different functionalities, we have studied the effects of the PI's structure and chemistry on the alignment characteristics and the cell's EO properties. Increasing the flexibility of the PI increases the pretilt angle and tends to improve the alignment stability. On the other hand, the rigid, fluorinated PI displays poor stability for LCs and induces a less stable/uniform LC alignment and, subsequently, a small pre tilt angle. It also transpired that fluorination of the PI deteriorated the voltage-transmittance characteristics and the voltage holding ratio; increasing the flexibility of the PI structure improves these EO properties. The finding that the qualitative trends for the PI's functionalities are similar for both the alignment and EO properties suggests that the EO properties are closely related to the alignment characteristics, which are determined by short-range interactions between LC and PI molecules.

Analysis of Gait Parameters According to the Clinical Features of Parkinson's Disease Using 3-D Motion Analysis System with Electrogoniometer (3차원 전기측각 보행분석기를 이용한 파킨슨씨병 환자의 임상 양상에 따른 보행 분석)

  • Baek, Hye-Jin;Yoon, Joon-Shik;Kim, Sei-Joo;Lee, Gyu-Ho;Koh, Seong-Beom
    • Annals of Clinical Neurophysiology
    • /
    • v.11 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • Background: To investigate the differences of locomotor dynamics between Parkinson's disease (PD) patients with tremor dominant symptom and patients with postural instability dominant symptom. Methods: 66 subjects with PD were classified into two subgroups, tremor-dominant group and postural instability and gait disorder group by Unified Parkinson's disease rating scale (UPDRS). The spatial, temporal and electrodynamic gait parameters were recorded automatically using computerized 3-D motion analysis system with electrogoniometer. Results: There was no significant difference in cadence, pelvic tilt range, hip flexion range, knee flexion range and ankle dorsiflexion range. Postural instability and gait disorder group showed decreased gait velocity, short stride length, decreased range of motion in pelvic obliquity, pelvic rotation and ankle plantar flexion. Conclusions: There was meaningful difference in locomotor dynamics between Parkinson's disease(PD) patients with tremor dominant symptom and patients with postural instability dominant symptom.

  • PDF

CONTINUOUS PERSON TRACKING ACROSS MULTIPLE ACTIVE CAMERAS USING SHAPE AND COLOR CUES

  • Bumrungkiat, N.;Aramvith, S.;Chalidabhongse, T.H.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.136-141
    • /
    • 2009
  • This paper proposed a framework for handover method in continuously tracking a person of interest across cooperative pan-tilt-zoom (PTZ) cameras. The algorithm here is based on a robust non-parametric technique for climbing density gradients to find the peak of probability distributions called the mean shift algorithm. Most tracking algorithms use only one cue (such as color). The color features are not always discriminative enough for target localization because illumination or viewpoints tend to change. Moreover the background may be of a color similar to that of the target. In our proposed system, the continuous person tracking across cooperative PTZ cameras by mean shift tracking that using color and shape histogram to be feature distributions. Color and shape distributions of interested person are used to register the target person across cameras. For the first camera, we select interested person for tracking using skin color, cloth color and boundary of body. To handover tracking process between two cameras, the second camera receives color and shape cues of a target person from the first camera and using linear color calibration to help with handover process. Our experimental results demonstrate color and shape feature in mean shift algorithm is capable for continuously and accurately track the target person across cameras.

  • PDF

Development of Underwater Laser Scanner with Efficient and Flexible Installation for Unmanned Underwater Vehicle (무인잠수정을 위한 효과적이고 유연한 설치 성능을 지닌 수중 레이저스캐너 개발)

  • Lee, Yeongjun;Lee, Yoongeon;Chae, Junbo;Choi, Hyun-Taek;Yeu, Tae-Kyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.511-517
    • /
    • 2018
  • This paper proposes a vision-based underwater laser scanner with separate structures for an underwater camera and a line laser projector. Because the two devices can be adaptively placed regardless of the features of the unmanned underwater vehicle (UUV), the scanner has significant advantages in relation to its availability and flexibility. Position calibration between the underwater camera and laser projector guarantees a 3D measuring performance with high accuracy. To verify the proposed underwater laser scanner, a test-bed system was manufactured, which consisted of the laser projector, camera, Pan&Tilt, and Attitude and Heading Reference System (AHRS). A camera-laser calibration test and simple 3D reconstruction test were performed in a water tank and the experimental results are reported.

Single Shot White Light Interference Microscopy for 3D Surface Profilometry Using Single Chip Color Camera

  • Srivastava, Vishal;Inam, Mohammad;Kumar, Ranjeet;Mehta, Dalip Singh
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.784-793
    • /
    • 2016
  • We present a single shot low coherence white light Hilbert phase microscopy (WL-HPM) for quantitative phase imaging of Si optoelectronic devices, i.e., Si integrated circuits (Si-ICs) and Si solar cells. White light interferograms were recorded by a color CCD camera and the interferogram is decomposed into the three colors red, green and blue. Spatial carrier frequency of the WL interferogram was increased sufficiently by means of introducing a tilt in the interferometer. Hilbert transform fringe analysis was used to reconstruct the phase map for red, green and blue colors from the single interferogram. 3D step height map of Si-ICs and Si solar cells was reconstructed at multiple wavelengths from a single interferogram. Experimental results were compared with Atomic Force Microscopy and they were found to be close to each other. The present technique is non-contact, full-field and fast for the determination of surface roughness variation and morphological features of the objects at multiple wavelengths.