• Title/Summary/Keyword: and nilpotent prime radical

Search Result 11, Processing Time 0.024 seconds

THE NILPOTENCY OF THE PRIME RADICAL OF A GOLDIE MODULE

  • John A., Beachy;Mauricio, Medina-Barcenas
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.185-201
    • /
    • 2023
  • With the notion of prime submodule defined by F. Raggi et al. we prove that the intersection of all prime submodules of a Goldie module M is a nilpotent submodule provided that M is retractable and M(Λ)-projective for every index set Λ. This extends the well known fact that in a left Goldie ring the prime radical is nilpotent.

GENERALIZED PRIME IDEALS IN NON-ASSOCIATIVE NEAR-RINGS I

  • Cho, Yong-Uk
    • East Asian mathematical journal
    • /
    • v.28 no.3
    • /
    • pp.281-285
    • /
    • 2012
  • In this paper, the concept of *-prime ideals in non-associative near-rings is introduced and then will be studied. For this purpose, first we introduce the notions of *-operation, *-prime ideal and *-system in a near-ring. Next, we will define the *-sequence, *-strongly nilpotent *-prime radical of near-rings, and then obtain some characterizations of *-prime ideal and *-prime radical $r_s$(I) of an ideal I of near-ring N.

CHARACTERIZATIONS OF ELEMENTS IN PRIME RADICALS OF SKEW POLYNOMIAL RINGS AND SKEW LAURENT POLYNOMIAL RINGS

  • Cheon, Jeoung-Soo;Kim, Eun-Jeong;Lee, Chang-Ik;Shin, Yun-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.277-290
    • /
    • 2011
  • We show that the ${\theta}$-prime radical of a ring R is the set of all strongly ${\theta}$-nilpotent elements in R, where ${\theta}$ is an automorphism of R. We observe some conditions under which the ${\theta}$-prime radical of coincides with the prime radical of R. Moreover we characterize elements in prime radicals of skew Laurent polynomial rings, studying (${\theta}$, ${\theta}^{-1}$)-(semi)primeness of ideals of R.

PRIME RADICALS OF FORMAL POWER SERIES RINGS

  • Huh, Chan;Kim, Hong-Kee;Lee, Dong-Su;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.623-633
    • /
    • 2001
  • In this note we study the prime radicals of formal power series rings, and the shapes of them under the condition that the prime radical is nilpotent. Furthermore we observe the condition structurally, adding related examples to the situations that occur naturally in the process.

  • PDF

RINGS IN WHICH NILPOTENT ELEMENTS FORM AN IDEAL

  • Cho, June-Rae;Kim, Nam-Kyun;Lee, Yang
    • East Asian mathematical journal
    • /
    • v.18 no.1
    • /
    • pp.15-20
    • /
    • 2002
  • We study the relationships between strongly prime ideals and completely prime ideals, concentrating on the connections among various radicals(prime radical, upper nilradical and generalized nilradical). Given a ring R, consider the condition: (*) nilpotent elements of R form an ideal in R. We show that a ring R satisfies (*) if and only if every minimal strongly prime ideal of R is completely prime if and only if the upper nilradical coincides with the generalized nilradical in R.

  • PDF

ARMENDARIZ PROPERTY OVER PRIME RADICALS

  • Han, Juncheol;Kim, Hong Kee;Lee, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.973-989
    • /
    • 2013
  • We observe from known results that the set of nilpotent elements in Armendariz rings has an important role. The upper nilradical coincides with the prime radical in Armendariz rings. So it can be shown that the factor ring of an Armendariz ring over its prime radical is also Armendariz, with the help of Antoine's results for nil-Armendariz rings. We study the structure of rings with such property in Armendariz rings and introduce APR as a generalization. It is shown that APR is placed between Armendariz and nil-Armendariz. It is shown that an APR ring which is not Armendariz, can always be constructed from any Armendariz ring. It is also proved that a ring R is APR if and only if so is R[$x$], and that N(R[$x$]) = N(R)[$x$] when R is APR, where R[$x$] is the polynomial ring with an indeterminate $x$ over R and N(-) denotes the set of all nilpotent elements. Several kinds of APR rings are found or constructed in the precess related to ordinary ring constructions.

Ideal Theory in Commutative A-semirings

  • Allen, Paul J.;Neggers, Joseph;Kim, Hee Sik
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.261-271
    • /
    • 2006
  • In this paper, we investigate and characterize the class of A-semirings. A characterization of the Thierrin radical of a proper ideal of an A-semiring is given. Moreover, when P is a Q-ideal in the semiring R, it is shown that P is primary if and only if R/P is nilpotent.

  • PDF

LOWER AND UPPER FORMATION RADICAL OF NEAR-RINGS

  • Saxena, P.K.;Bhandari, M.C.
    • Kyungpook Mathematical Journal
    • /
    • v.19 no.2
    • /
    • pp.205-211
    • /
    • 1979
  • In this paper we continue the study of formation radical (F-radical) classes initiated in [3]. Hereditary and stronger properties of F-radical classes are discussed by giving construction for lower hereditary, lower stronger and lower strongly hereditary F-radical classes containing a given class M. It is shown that the Baer F-radical B is the lower strongly hereditary F-radical class containing the class of all nilpotent ideals and it is the upper radical class with $\{(I,\;N){\mid}N{\in}C,\;N\;is\;prime\}{\subset}SB$ where SB denotes the semisimple F-radical class of B and C is an arbitrary but fixed class of homomorphically closed near-rings. The existence of a largest F-radical class contained in a given class is examined using the concept of complementary F-radical introduced by Scott [5].

  • PDF

NONNIL-S-COHERENT RINGS

  • Najib Mahdou;El Houssaine Oubouhou
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.45-58
    • /
    • 2024
  • Let R be a commutative ring with identity. If the nilpotent radical N il(R) of R is a divided prime ideal, then R is called a ϕ-ring. Let R be a ϕ-ring and S be a multiplicative subset of R. In this paper, we introduce and study the class of nonnil-S-coherent rings, i.e., the rings in which all finitely generated nonnil ideals are S-finitely presented. Also, we define the concept of ϕ-S-coherent rings. Among other results, we investigate the S-version of Chase's result and Chase Theorem characterization of nonnil-coherent rings. We next study the possible transfer of the nonnil-S-coherent ring property in the amalgamated algebra along an ideal and the trivial ring extension.

RINGS WITH A RIGHT DUO FACTOR RING BY AN IDEAL CONTAINED IN THE CENTER

  • Cheon, Jeoung Soo;Kwak, Tai Keun;Lee, Yang;Piao, Zhelin;Yun, Sang Jo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.529-545
    • /
    • 2022
  • This article concerns a ring property that arises from combining one-sided duo factor rings and centers. A ring R is called right CIFD if R/I is right duo by some proper ideal I of R such that I is contained in the center of R. We first see that this property is seated between right duo and right π-duo, and not left-right symmetric. We prove, for a right CIFD ring R, that W(R) coincides with the set of all nilpotent elements of R; that R/P is a right duo domain for every minimal prime ideal P of R; that R/W(R) is strongly right bounded; and that every prime ideal of R is maximal if and only if R/W(R) is strongly regular, where W(R) is the Wedderburn radical of R. It is also proved that a ring R is commutative if and only if D3(R) is right CIFD, where D3(R) is the ring of 3 by 3 upper triangular matrices over R whose diagonals are equal. Furthermore, we show that the right CIFD property does not pass to polynomial rings, and that the polynomial ring over a ring R is right CIFD if and only if R/I is commutative by a proper ideal I of R contained in the center of R.