• Title/Summary/Keyword: and injective modules

Search Result 90, Processing Time 0.019 seconds

INJECTIVE REPRESENTATIONS OF QUIVERS

  • Park, Sang-Won;Shin, De-Ra
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.37-43
    • /
    • 2006
  • We prove that $M_1\longrightarrow^f\;M_2$ is an injective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ if and only if $M_1\;and\;M_2$ are injective left R-modules, $M_1\longrightarrow^f\;M_2$ is isomorphic to a direct sum of representation of the types $E_l{\rightarrow}0$ and $M_1\longrightarrow^{id}\;M_2$ where $E_l\;and\;E_2$ are injective left R-modules. Then, we generalize the result so that a representation$M_1\longrightarrow^{f_1}\;M_2\; \longrightarrow^{f_2}\;\cdots\;\longrightarrow^{f_{n-1}}\;M_n$ of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\cdots}{\rightarrow}{\bullet}$ is an injective representation if and only if each $M_i$ is an injective left R-module and the representation is a direct sum of injective representations.

Semi M-Projective and Semi N-Injective Modules

  • Hakmi, Hamza
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.1
    • /
    • pp.83-94
    • /
    • 2016
  • Let M and N be modules over a ring R. The purpose of this paper is to study modules M, N for which the bi-module [M, N] is regular or pi. It is proved that the bi-module [M, N] is regular if and only if a module N is semi M-projective and $Im({\alpha}){\subseteq}^{\oplus}N$ for all ${\alpha}{\in}[M,N]$, if and only if a module M is semi N-injective and $Ker({\alpha}){\subseteq}^{\oplus}N$ for all ${\alpha}{\in}[M,N]$. Also, it is proved that the bi-module [M, N] is pi if and only if a module N is direct M-projective and for any ${\alpha}{\in}[M,N]$ there exists ${\beta}{\in}[M,N]$ such that $Im({\alpha}{\beta}){\subseteq}^{\oplus}N$, if and only if a module M is direct N-injective and for any ${\alpha}{\in}[M,N]$ there exists ${\beta}{\in}[M,N]$ such that $Ker({\beta}{\alpha}){\subseteq}^{\oplus}M$. The relationship between the Jacobson radical and the (co)singular ideal of [M, N] is described.

PRECOVERS AND PREENVELOPES BY MODULES OF FINITE FGT-INJECTIVE AND FGT-FLAT DIMENSIONS

  • Xiang, Yueming
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.497-510
    • /
    • 2010
  • Let R be a ring and n a fixed non-negative integer. $\cal{TI}_n$ (resp. $\cal{TF}_n$) denotes the class of all right R-modules of FGT-injective dimensions at most n (resp. all left R-modules of FGT-flat dimensions at most n). We prove that, if R is a right $\prod$-coherent ring, then every right R-module has a $\cal{TI}_n$-cover and every left R-module has a $\cal{TF}_n$-preenvelope. A right R-module M is called n-TI-injective in case $Ext^1$(N,M) = 0 for any $N\;{\in}\;\cal{TI}_n$. A left R-module F is said to be n-TI-flat if $Tor_1$(N, F) = 0 for any $N\;{\in}\;\cal{TI}_n$. Some properties of n-TI-injective and n-TI-flat modules and their relations with $\cal{TI}_n$-(pre)covers and $\cal{TF}_n$-preenvelopes are also studied.

w-INJECTIVE MODULES AND w-SEMI-HEREDITARY RINGS

  • Wang, Fanggui;Kim, Hwankoo
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.509-525
    • /
    • 2014
  • Let R be a commutative ring with identity. An R-module M is said to be w-projective if $Ext\frac{1}{R}$(M,N) is GV-torsion for any torsion-free w-module N. In this paper, we define a ring R to be w-semi-hereditary if every finite type ideal of R is w-projective. To characterize w-semi-hereditary rings, we introduce the concept of w-injective modules and study some basic properties of w-injective modules. Using these concepts, we show that R is w-semi-hereditary if and only if the total quotient ring T(R) of R is a von Neumann regular ring and $R_m$ is a valuation domain for any maximal w-ideal m of R. It is also shown that a connected ring R is w-semi-hereditary if and only if R is a Pr$\ddot{u}$fer v-multiplication domain.

SEMISIMPLE INJECTIVE COMODULE

  • AMR AMIN;NASR ZEYADA
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.4
    • /
    • pp.831-838
    • /
    • 2023
  • In this paper, we define the concept of a semisimple injective comodule. We show that it is a generalization of some known comodules, and we give a useful characterization of this notion. Finally, we obtain a new characterization of simple semiartinian coring using semisimple injective comodules.

INJECTIVE COVERS OVER COMMUTATIVE NOETHERIAN RINGS OF GLOBAL DIMENSION AT MOST TWO II

  • KIM, HAE-SIK;SONG, YEONG-MOO
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.437-442
    • /
    • 2005
  • In studying injective covers, the modules C such that Hom(E, C) = 0 and $Ext^1$(E, C) = 0 for all injective module E play an important role because of Wakamatsu's lemma. If C is a module over the ring k[[x, y]] with k a field, the class of these modules C contains the class $\={D}$ of all direct summands of products of modules of finite length ([3, Theorem 2.9]). In this paper we show that every module over any commutative ring has a $\={D}$-preenvelope.

INJECTIVE AND PROJECTIVE PROPERTIES OF REPRESENTATIONS OF QUIVERS WITH n EDGES

  • Park, Sangwon
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.323-334
    • /
    • 2008
  • We define injective and projective representations of quivers with two vertices with n arrows. In the representation of quivers we denote n edges between two vertices as ${\Rightarrow}$ and n maps as $f_1{\sim}f_n$, and $E{\oplus}E{\oplus}{\cdots}{\oplus}E$ (n times) as ${\oplus}_nE$. We show that if E is an injective left R-module, then $${\oplus}_nE{\Longrightarrow[50]^{p_1{\sim}p_n}}E$$ is an injective representation of $Q={\bullet}{\Rightarrow}{\bullet}$ where $p_i(a_1,a_2,{\cdots},a_n)=a_i,\;i{\in}\{1,2,{\cdots},n\}$. Dually we show that if $M_1{\Longrightarrow[50]^{f_1{\sim}f_n}}M_2$ is an injective representation of a quiver $Q={\bullet}{\Rightarrow}{\bullet}$ then $M_1$ and $M_2$ are injective left R-modules. We also show that if P is a projective left R-module, then $$P\Longrightarrow[50]^{i_1{\sim}i_n}{\oplus}_nP$$ is a projective representation of $Q={\bullet}{\Rightarrow}{\bullet}$ where $i_k$ is the kth injection. And if $M_1\Longrightarrow[50]^{f_1{\sim}f_n}M_2$ is an projective representation of a quiver $Q={\bullet}{\Rightarrow}{\bullet}$ then $M_1$ and $M_2$ are projective left R-modules.

  • PDF