• Title/Summary/Keyword: and electrical stability

Search Result 4,271, Processing Time 0.032 seconds

Analysis of Small Signal Stability Using Resonance Conditions (공진조건을 이용한 미소신호 안정도 해석)

  • Cho, Sung-Jin;Jang, Gil-Soo;Yoon, Tae-Woong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.11
    • /
    • pp.535-543
    • /
    • 2002
  • Modern power grids are becoming more and more stressed with the load demands increasing continually. Therefore large stressed power systems exhibit complicated dynamic behavior when subjected to small disturbance. Especially, it is needed to analyze special conditions which make small signal stability structure varied according to operating conditions. This paper shows that the relation between small signal stability structure varied according to operating conditions. This paper shows that the relation between small signal stability and operating conditions can be identified well using node-focus point and 1:1 resonance point. Also, the weak point which limits operating range is found by the analysis of resonance condition, and it is shown that reactive power compensation may solve the problem in the weak points. The proposed method is applied to test systems, and the results illustrate its capabilities.

An Adaptive Autoreclosure Scheme with Reference to Transient Stability for Transmission Lines (송전선로의 과도 안정도를 고려한 적응 자동재폐로 기법)

  • 허정용;김철환
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.12
    • /
    • pp.698-704
    • /
    • 2003
  • Autoreclosure provides a mean of improving power transmitting ability and system stability. The conventional reclosure adopts the fixed dead time interval strategy, that is, the reclosure is activated after a time delay to restore the system to normal as quickly as possible without regard to the system conditions, however, these simple techniques cannot give the optimal operating performance. For this reason, various adaptive reclosure algorithms have been proposed recently, This paper presents an adaptive autoreclosure algorithm including the variable dead time, optimal reclosure, sequential reclosure and emergency extended equal-area criterion (EEAC) algorithm in order to improve the system stability. The reclosure algorithm performs out the operations that are attuned to the power system conditions. The proposed adaptive reclosure algorithm is verified and tested by using EMTP MODELS, and the simulation results show that the system oscillations are reduced and the transient stability is enhanced by employing the proposed adaptive reclosure algorithm.

A fuzzy Sliding Mode Control of Wheeled Mobile Robot with a Differential Drive

  • Kang, Young-Hoon;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.265-270
    • /
    • 1998
  • In this paper we introduce a modeling of wheeled mobile robot with a differential drive derived by R.M. DeSantis and using the dynamics model-ing with some disturbance term we control the wheeled mobile robot using fuzzy sliding mode control(FSMC) method. In a fuzzy control approach it is very difficult to prove the stability of the fuzzy controller. Therefore, to overcome that difficult proof of the stability in a fuzzy control method, we first propose a sliding mode controller and prove the stability of the proposed controller. Next, transforming the proposed sliding mode controller into a fuzzy sliding mode controller without changing the basic structure of the sliding mode con-troller, we easily obtain a fuzzy sliding mode con-troller(FSMC) whose stability is guaranteed with-out difficult stability proof procedure of the proposed FSMC.

  • PDF

Analysis of the Factors Affecting Low-Frequency Oscillations in KEPCO Power System` With Pumped-Storage Plant (한전 전력계통의 저주파 진동현상 요인분석;양수발전기 기동시)

  • Kil Yeong Song;Sae Hyuk Kwon;Kyu Min Ro;Seok Ha Song
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.841-849
    • /
    • 1992
  • In power system operation, the stability of synchronous machine has been recognized one of the most important things. AESOPS program developed by EPRI in U.S.A. is a frequency domain analysis program in power system stability and it computes the electro-mechanical oscillation mode. This paper presents how to analyze the power system small signal stability problem efficiently by uusing the AESOPS program and analyze the various factors affecting the damping characteristics of these oscillations in KEPCO power system of 1986 with pumped-storage plant. To reduce the computing time and efforts, selecting the poorly-damped oscillation mode and clustering technique have been used. The characteristics of load, the amount of power flow on the transmission line and the gain of exciter have a significant effects on the damping of the system while the governing system has only a minor one. With the Power System Stabilizers, the stability of the power system has been improved.

  • PDF

Improved Thermal Stability of Ag Nanowire Heaters with ZnO Layer (ZnO를 이용한 은 나노와이어 히터의 열 안정성 향상)

  • Choi, Wonjung;Jo, Sungjin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.530-534
    • /
    • 2017
  • Transparent film heaters employing silver nanowires (Ag NWs) have attracted increasing attention because of their widespread applications. However, the low thermal resistance of Ag NWs limits the maximum operating temperature of the Ag NW film heater. In this study, Ag NW film heaters with high mechanical and thermal stability were successfully developed. The thermal power-out characteristics of the Ag NW heaters were investigated as a function of the Ag NW density. The results revealed that the prepared flexible Ag NW heater possessed high thermal stability over $190^{\circ}C$ owing to ZnO encapsulation. This indicates that the Ag NW film with excellent thermal stability have remarkably high potential for use as electrodes in film heaters operating at high temperatures.

Research on the Power Sharing Control and Stability of VSGs

  • Xie, Dong;Zang, Da-Jin;Gao, Peng;Wang, Jun-Jia
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.542-550
    • /
    • 2017
  • Aiming at the deficiencies of power sharing control performances when a traditional droop control is adopted for microgrid inverters, this paper proposes a microgrid inverter power sharing control strategy based on a virtual synchronous generator. This control method simulates the electromechanical transient characteristics of a synchronous generator in a power system by an ontology algorithm and the control laws of a synchronous generator by control over the speed governor and excitation regulator. As a result, that the microgrid system is able to effectively retain the stability of the voltage and frequency, and the power sharing precision of the microgrid inverter is improved. Based on an analysis of stability of a microgrid system controlled by a virtual synchronous generator, design thoughts are provided for further improvement of the power sharing precision of inverters. The simulation results shows that when the virtual synchronous generator based control strategy was adopted, the power sharing performances of microgrid inverters are improved more obviously than those using the droop control strategy.

Electrical Properies, Clamping Voltage Characteristics, and Stability of Dysprosia-doped ZnO-Pr6O11Based Varistors (디스프로시아가 첨가된 ZnO-Pr6O11계 바리스터 전기적 성질, 제한전압특성 및 안정성)

  • Nahm, Choon-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.50-56
    • /
    • 2005
  • The electrical properties, clamping voltage characteristics, and stability of dysprosia-doped ZnO-P $r_{6}$ $O_{11}$-based varistors were investigated with different dysprosia contents from 0 to 2.0 mol%. The incorporation of dysprosia in varistor ceramics greatly increased the varistor voltage from 50 to 481.0 V/mm. It was found that the dysprosia is good additive improving a nonlinearity, in which the nonlinear exponent is above or near 50, and the leakage current is below 1.0 $\mu$A. The dysprosia-doped varistors exhibited superior clamping voltage characetristics, in which clamping voltage ratio is above or neat 2 at surge current of 50 A. The 0.5 mol% dysprosia-doped varistors only exhibited high stability, with the rate of varistor voltage of -0.9%, under DC acceleraetd aging stress, 0.95 $V_{lmA}$/15$0^{\circ}C$/24 h.h.h.h.

A Study on Evaluating of Voltage Stability Using the Line Flow Equation. (선로조류방정식 특성을 이용한 전압안정도 평가에 관한 연구)

  • Song, Kil-Young;Kim, Sae-Young;Kim, Yong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.797-799
    • /
    • 1996
  • This paper presents a simple method for evaluating of voltage stability using the line flow equation. Line flow equations($P_{ij}$, $Q_{ij}$) are comprised of state variable, $V_i$, ${\delta}_i$, $V_j$ and ${\delta}_j$, and line parameter, r and x. Using the feature of polar coordinate, these equations become one equation with two variables, $V_i$ and $V_j$. Moreover, if bus j is slack bus or generator bus, which is specified voltage magnitude, it becomes One equation with one variable $V_i$, that is, may be formulated with the second-order equation for $V_i^2$. Therefore, solutions are obtained with simple computation. Solutions obtained are used for evaluating of voltage stability through sensitivity analysis. Also, considering of reactive power source, method for evaluating the voltage stability is introduced. The proposed method was validated to 2-bus and IEEE 6-bus system.

  • PDF

Stability Region Evaluation of Control Inputs by Fuzzy-Ttype Lyapunov Function for Nonlinear Control System

  • Kuwata, Akihiko;Kawamoto, Shunji;Kanetaka, Iwao;Takino, Katsuhiko;Ishigamr, Atsushi;Taniguchi, Tsunco;Tanaka, Hiroyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.416-421
    • /
    • 1994
  • Electric Power system is a large scale nonlinear control one. Therefore, nonlinear control is desirable for the stabilizing, and it is thought that to establish an analytical method for optimal control inputs of AVR(automatic voltage regulator) and GOV(governor) is an important subject. In this paper, as a simple case, one-machine infinite-bus electric power model system with GOV is treated under the three kinds of control inputs; (i) fuzzy control input, (ii) linear control input and (iii) no control input. Next, the stability for each case is analyzed, and the three-dimensional stability regions and control responses are evaluated and compared. Finally, it is concluded that the linear control input does not necessarily give a good region and response, and the fuzzy one is better than others.

  • PDF

Composited Conductive Materials for Enhancing the Ultrafast Performance for Anode in Lithium-Ion Battery (리튬이온전지 음극의 고속 성능 향상을 위한 도전재 복합화)

  • Ki-Wook, Sung;Hyo-Jin, Ahn
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.474-480
    • /
    • 2022
  • Lithium-ion batteries (LIBs) are powerful energy storage devices with several advantages, including high energy density, large voltage window, high cycling stability, and eco-friendliness. However, demand for ultrafast charge/discharge performance is increasing, and many improvements are needed in the electrode which contains the carbon-based active material. Among LIB electrode components, the conductive additive plays an important role, connecting the active materials and enhancing charge transfer within the electrode. This impacts electrical and ionic conductivity, electrical resistance, and the density of the electrode. Therefore, to increase ultrafast cycling performance by enhancing the electrical conductivity and density of the electrode, we complexed Ketjen black and graphene and applied conductive agents. This electrode, with the composite conductive additives, exhibited high electrical conductivity (12.11 S/cm), excellent high-rate performance (28.6 mAh/g at current density of 3,000 mA/g), and great long-term cycling stability at high current density (88.7 % after 500 cycles at current density of 3,000 mA/g). This excellent high-rate performance with cycling stability is attributed to the increased electrical conductivity, due to the increased amount of graphene, which has high intrinsic electrical conductivity, and the high density of the electrode.