DOI QR코드

DOI QR Code

Improved Thermal Stability of Ag Nanowire Heaters with ZnO Layer

ZnO를 이용한 은 나노와이어 히터의 열 안정성 향상

  • Choi, Wonjung (School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University) ;
  • Jo, Sungjin (School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University)
  • 최원정 (경북대학교 건설환경에너지공학부) ;
  • 조성진 (경북대학교 건설환경에너지공학부)
  • Received : 2017.06.21
  • Accepted : 2017.07.06
  • Published : 2017.08.01

Abstract

Transparent film heaters employing silver nanowires (Ag NWs) have attracted increasing attention because of their widespread applications. However, the low thermal resistance of Ag NWs limits the maximum operating temperature of the Ag NW film heater. In this study, Ag NW film heaters with high mechanical and thermal stability were successfully developed. The thermal power-out characteristics of the Ag NW heaters were investigated as a function of the Ag NW density. The results revealed that the prepared flexible Ag NW heater possessed high thermal stability over $190^{\circ}C$ owing to ZnO encapsulation. This indicates that the Ag NW film with excellent thermal stability have remarkably high potential for use as electrodes in film heaters operating at high temperatures.

Keywords

References

  1. T. Y. Kim, Y. W. Kim, H. S. Lee, H. Kim, W. S. Yang, and K. S. Suh, Adv. Funct. Mater., 23, 1250 (2013). [DOI: https://doi.org/10.1002/adfm.201202013]
  2. P. Liu, L. Liu, K. Jiang, and S. Fan, Small, 7, 732 (2011). [DOI: https://doi.org/10.1002/smll.201001662]
  3. C. Celle, C. Mayousse, E. Moreau, H. Basti, A. Carella, and J. P. Simonato, Nano Res., 5, 427 (2012). [DOI: https://doi.org/10.1007/s12274-012-0225-2]
  4. D. Kim, L. Zhu, D. J. Jeong, K. Chun, Y. Y. Bang, S. R. Kim, J. H. Kim, and S. K. Oh, Carbon, 63, 530 (2013). [DOI: https://doi.org/10.1016/j.carbon.2013.07.030]
  5. Z. P. Wu and J. N. Wang, Physica E, 42, 77 (2009). [DOI: https://doi.org/10.1016/j.physe.2009.09.003]
  6. K. Im, K. Cho, K. Kwak, J. Kim, and S. Kim, J. Nanosci. Nanotechnol., 13, 3519 (2013). [DOI: https://doi.org/10.1166/jnn.2013.7322]
  7. A. Y. Kim, K. Lee, J. H. Park, D. Byun, and J. K. Lee, Phys. Status Solidi A, 211, 1923 (2014). [DOI: https://doi.org/10.1002/pssa.201330517]
  8. D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J. P. Simonato, Nanotechnology, 24, 452001 (2013). [DOI: https://doi.org/10.1088/0957-4484/24/45/452001]
  9. S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, Adv. Mater., 26, 6670 (2014). [DOI: https://doi.org/10.1002/adma.201402710]
  10. H. G. Im, J. Jin, J. H. Ko, J. Lee, J. Y. Lee, and B. S. Bae, Nanoscale, 6, 711 (2014). [DOI: https://doi.org/10.1039/c3nr05348b]
  11. S. Nam, M. Song, D. H. Kim, B. Cho, H. M. Lee, J. D. Kwon, S. G. Park, K. S. Nam, Y. Jeong, S. H. Kwon, Y. C. Park, S. H. Jin, J. W. Kang, S. Jo, and C. S. Kim, Sci. Rep., 4, 4788 (2014). [DOI: https://doi.org/10.1038/srep04788]
  12. D. Chen, J. Liang, C. Liu, G. Saldanha, F. Zhao, K. Tong, J. Liu, and Q. Pei, Adv. Funct. Mater., 25, 7512 (2015). [DOI: https://doi.org/10.1002/adfm.201503236]
  13. J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Lett., 8, 689 (2008). [DOI: https://doi.org/10.1021/nl073296g]
  14. T. B. Song, Y. Chen, C. H. Chung, Y. Yang, B. Bob, H. S. Duan, G. Li, K. N. Tu, Y. Huang, and Y. Yang, ACS Nano, 8, 2804 (2014). [DOI: https://doi.org/10.1021/nn4065567]