• Title/Summary/Keyword: and electrical properties

Search Result 13,031, Processing Time 0.038 seconds

Experimental Measurement of Magnetic Properties of a Toroidal-type Bulk Electrical Steel using B-waveform Control (자속밀도 파형제어에 의한 토로이달 벌크 전기강의 자기특성 측정)

  • Eum, Young-Hwan;Koh, Chang-Seop;Hong, Sun-Ki;Shin, Pan-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.869-875
    • /
    • 2007
  • Magnetic properties of electrical steel are, in general. measured by using Epstein frame or single sheet tester (SST). These methods, however, require very strict regulation of a specimen in its size and shape. thus, can not be easily applied to various types of specimen. On the other hand, a ring-test method, which measures only the isotropic properties, can be easily applied to most cases because it requires a toroidal-type specimen of arbitrary size. This method, especially, is considered as an unique available method for a bulk-type specimen. In this paper, a ring-test method is developed, and applied to the measurement of magnetic properties of a bulk-type electrical steel with a toroidal-type specimen. In the measurement, the magnetic properties and iron losses are measured and compared with each other at the both sinusoidal magnetic flux density and sinusoidal magnetic field intensity conditions under 0.2Hz and 60Hz alternating magnetic fields excitation. Through experimental measurements, a sinusoidal magnetic flux density condition is proven appropriate for the measurement of magnetic properties, including iron loss characteristics, of electrical steels.

A Computationally Efficient Finite Element Analysis Algorithm Considering 2-D Magnetic Properties of Electrical Steel Sheet

  • Yao, Yingying;Li, Wei;Yoon, Hee-Sung;Fujiwara, Koji;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.385-390
    • /
    • 2008
  • For taking account of the two-dimensional magnetic properties of a grain-oriented electrical steel sheet, the effective anisotropic tensor reluctivity is examined, and a computationally efficient algorithm is suggested by using the response surface method to model the two-dimensional magnetic properties. It is shown that the reconstructed two-dimensional magnetic properties are fairly effective to stabilize the convergence characteristics of the Newton-Raphson iteration in the nonlinear magnetic field analysis.

Electric Properties of Mercury-free Xe EEFL (무수은 제논 EEFL의 전기적 특성)

  • Lee, Seong-Jin;Kim, Nam-Goon;Lee, Jong-Chan;Park, Noh-Joon;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.650-657
    • /
    • 2007
  • This paper had mentioned about CCP light source application for increasing the efficiency of Xe lamp the mercury-free lamp. In order to increase the efficiency of Xe EEFL, we designed and manufactured the lamp used by mixture gas of Xe, Ne and He. Also, we have analyzed the electrical and optical properties with the firing voltage, sustain voltage, paschen's curve, wall charge, and capacitance. As a result, the firing voltage decreased by increasing the ration of mixture gas. and, It is owing to include the gas with high ionization energy. The firing voltage decreased in condition happening the penning effect, Because the ion of metastable state created from penning effect, Which can encourage the ionization phenomena. Also, the wavelength of 467.12 is increase. because of the energy transition in the wavelength of 147 nm. therefore, we can know about the affection of phosphor with UV emission properties. Through an experiment, Xe 100 % and Xe 75 % confirmed same spectrum properties by each mixture gas ratio. In the case of Xe 50 %, spectrum properties appeared Xe discharge and Ne-He discharge. That analyzed an electrical and optical properties. Therefore, confirmed that is excellent because properties of firing voltage, wall charge, capacitance in Xe 50 %, Ne : He = 9 : 1. We offered parameter in inverter manufacture and lamp manufacture by electrical and optical properties.

Electrical Properties of the Epoxy Nano-composites according to Additive

  • Shin, Jong-Yeol;Park, Hee-Doo;Choi, Kwang-Jin;Lee, Kang-Won;Lee, Jong-Yong;Hong, Jin-Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.97-101
    • /
    • 2009
  • The use of a filler material in epoxy composite materials is an essential condition for reducing the unit cost of production and reinforcing mechanical strength. However, the dielectric strength of insulators decreases rapidly due to interactions between the epoxy resin and filler particles. In contrast to existing composite materials, nano-composite materials have superior dielectric strength, mechanical strength, and enduring chemical properties due to an increase in the bond strength of the polymer and nano material, It is reported that nano-fillers provide new characteristics different from the properties of the polymer material. This study is to improve the insulation capability of epoxy resins used in the insulation of a power transformer apparatus and many electronic devices mold. To accomplish this, the additional amount of nano-$SiO_2$ to epoxy resin was changed and the epoxy/$SiO_2$ nano composite materials were made, and the fundamental electrical properties were investigated using a physical properties and an analysis breakdown test. Using allowable breakdown probability, the optimum breakdown strength for designing an electrical apparatus was determined. The results found that the electrical characteristics of the nano-$SiO_2$ content specimens were superior to the virgin specimens. The 0.4 wt% specimens showed the highest electrical properties among the specimens examined with an allowable breakdown probability of 20 %, which indicates stable breakdown strength in insulating machinery design.

Electrical Properties of XLPE/VLDPE B1ends (XLPE/VLDPE 블렌드의 전기적 성질)

  • 고정우;서광석;김종은;강형식;김덕주
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.215-218
    • /
    • 1998
  • XLPE/VLDPE (Crosslinked polyethylene/very low density polyethylene) blends were prepared by a twin screw extruder and their electrical properties such as water tree and breakdown characteristic were measured. it was found that both water tree and breakdown characteristics of XLPE were improved by the addition of VLDPE to polyethylene. It was also found that the extent of improvement of electrical properties by the addition of VLDPE to polyethylene depends on the type and concentration of VLDPE.

  • PDF

A study on the Properties of Cement Mortar Containing Electrically Conductive Materials (전기전도성 재료를 혼입한 시멘트 모르타르의 전기적 특성에 관한 연구)

  • 최길섭;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.933-938
    • /
    • 2000
  • Concrete has been used for many years as a composite material that has excellent mechanical properties and durability for construction. However, concrete is a poor electrical conductor, especially under dry conditions. Concrete that is excellent in both mechanical and electrical conductivity properties may have important applications in the electrical, electronic, military and construction industry(e.g. for de-icing road from snow). The purpose of this investigation is to improve the electrical conductive of cement mortar preparared with coke dust, graphite, carbon black and carbon fiber as filler. From the test result, as the content of electrically conductive material increased, fluidity and strength decreased but resistivity decreased. The resistivity of electrical conductive cement mortar is effect by water/cement, and aggregate. Cement mortar containing carbon fiber has the best electrical properties considering strength. From this study, it is enough to assure the use of carbon fiber, carbon black and graphite as a conductive filler for electrical conductive cement mortar.

Effects of Morphology on the Electrical and Mechanical Properties of the Polycarbonate/Multi-Walled Carbon Nanotube Composites

  • Kum Chong-Ku;Sung Yu-Taek;Han Mi-Sun;Lee Heon-Sang;Lee Sun-Jeong;Joo Jin-Soo;Kim Woo-Nyon
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.456-460
    • /
    • 2006
  • The electrical, morphological, and mechanical properties of poly carbonate (PC)/multi-walled carbon nan-otube (MWNT) composites were studied by electrical conductivity, electromagnetic interference shielding efficiency (EMI SE), scanning electron microscopy, and tensile strength measurements. In the electrical property analysis of the PC/MWNT composites, the percolation threshold of the PC/MWNT composites was observed between 1.5 and 2.5 wt% MWNT content. From the electrical conductivity and EMI SE studies, the theoretical values of the EMI SE were in good agreement with the experimental values of the EMI SE. From the morphology of the PC/MWNT composites, it was observed that MWNT is dispersed homogenously in the PC matrix. From the electrical conductivity and morphological studies, it was suggested that the percolation threshold of the PC/MWNT composites is related with the morphological results in that MWNT is apparently interconnected to form an electrical pathway. The mechanical properties of the PC/MWNT composites peaked at the MWNT content of 2.5 wt%.

Design and Fabrication Process Effects on Electrical Properties in High Capacitance Multilayer Ceramic Capacitor (고용량 적층 세라믹 커패시터에서 설계 및 제조공정에 따른 전기적 특성 평가)

  • Yoon, Jung-Rag;Woo, Byong-Chul;Lee, Heun-Young;Lee, Serk-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.2
    • /
    • pp.118-123
    • /
    • 2007
  • The purpose of this work was to investigate the design and fabrication process effects on electrical properties in high capacitance multilayer ceramic capacitor (MLCC) with nickel electrode. Dielectric breakdown voltage and insulation resistance value were decreased with increasing stack layer number, but dielectric constant and capacitance were increased. With increasing green sheet thickness, dielectric breakdown voltage, C-V and I-V properties were also increased. The major reasons of the effects were thought to be the defects generated extrinsically during fabrication process and interfacial reactions formed between nickel electrode and dielectric layer. These investigations clearly showed the influence of both green sheet thick ness and stack layer number on the electrical properties in fabricating the MLCC.

2-Dimensional Magnetic Properties of Electrical Steel Sheet Under Rotating Magnetic Field (회전자계하 전기강판의 2차원 자기적 특성 분석)

  • Ha, Kyung-Ho;Kim, Ji-Hyun;Kwon, Oh-Yeoul;Cha, Sang-Yoon;Kim, Jae-Kwan;Takahashi, Norio
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.621-622
    • /
    • 2008
  • This paper deals with the magnetic properties under the rotational magnetic field on the electrical steel sheet by using Single Sheet Tester with two excitation coils. Actually, the magnetic flux of stator cores in running motors have the behaviour of rotating and alternating flux. In order to improve motor characteristics, it is require to estimate these magnetic properties. When the magnetic field vectors are rotating around in the plane of the sheet during one period of cycle, the magnetization properties and the core loss are measured and then, the results are compared with the magnetic properties obtained by the alternating magnetic fields.

  • PDF

Electrical and Microwave properties of Amorphous As-Ge-Te devices (비정질 As-Ge-Te 스위칭 소자의 전기적 및 마이크로파 주파수 특성)

  • Yi, Byeong-Seok;Cheon, Seok-Pyo;Lee, Hyun-Yong;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1016-1018
    • /
    • 1995
  • In this paper, we studied the electrical and the microwave properties of the amorphous $As_{10}Ge_{15}Te_{75}$ thin film. The electrical properties of a-$As_{10}Ge_{15}Te_{75}$ thin film were examined d.c. and a.c. bias with annealing condition. As the result of the electrical properties, we observed the physical characteristics of a-$As_{10}Ge_{15}Te_{75}$ thin film such as the density of defect states, characteristic relaxation time, localized density of states, and localized wave function by using CBH and QMT model. We also examined the microwave conduction properties before and after d.e. switching.

  • PDF