• Title/Summary/Keyword: and call dropping probability

Search Result 39, Processing Time 0.013 seconds

Call Admission Control Based on Adaptive Bandwidth Allocation for Wireless Networks

  • Chowdhury, Mostafa Zaman;Jang, Yeong Min;Haas, Zygmunt J.
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.15-24
    • /
    • 2013
  • Provisioning of quality of service (QoS) is a key issue in any multi-media system. However, in wireless systems, supporting QoS requirements of different traffic types is a more challenging problem due to the need to simultaneously minimize two performance metrics - the probability of dropping a handover call and the probability of blocking a new call. Since QoS requirements are not as stringent for non-real-time traffic, as opposed to real-time traffic, more calls can be accommodated by releasing some bandwidth from the already admitted non-real-time traffic calls. If the released bandwidth that is used to handle handover calls is larger than the released bandwidth that is used for new calls, then the resulting probability of dropping a handover call is smaller than the probability of blocking a new call. In this paper, we propose an efficient call admission control algorithm that relies on adaptive multi-level bandwidth-allocation scheme for non-realtime calls. The scheme allows reduction of the call dropping probability, along with an increase in the bandwidth utilization. The numerical results show that the proposed scheme is capable of attaining negligible handover call dropping probability without sacrificing bandwidth utilization.

Adaptive Call Admission Control Based on Resource Prediction by Neural Network in Mobile Wireless Environments (모바일 무선환경에서 신경망 자원예측에 의한 적응 호 수락제어)

  • Lee, Jin-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.208-213
    • /
    • 2009
  • This paper presents an adaptive call admission control(CAC) algorithm based on a target handoff call dropping probability in mobile wireless environments. This method uses a neural network for predicting and reserving the bandwidth demands for handoff calls and new calls. The amount of bandwidth to be reserved is adaptively adjusted by a target value of handoff call dropping probability(CDP). That is, if the handoff CDP exceeds the a target CDP value, the bandwidth to be reserved should be increased to reduce the handoff dropping probability below a target value. The proposed method is intended to prevent from increasing handoff call dropping probability when bandwidth to be reserved is not enough for handoff calls due to an uncertain prediction. Our simulations compare the handoff CDP in proposed CAC with that of an existing CAC. Results show that the proposed method sustains handoff call dropping probability below our target value.

  • PDF

Uniform Fractional Band CAC Scheme for QoS Provisioning in Wireless Networks

  • Rahman, Md. Asadur;Chowdhury, Mostafa Zaman;Jang, Yeong Min
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.583-600
    • /
    • 2015
  • Generally, the wireless network provides priority to handover calls instead of new calls to maintain its quality of service (QoS). Because of this QoS provisioning, a call admission control (CAC) scheme is essential for the suitable management of limited radio resources of wireless networks to uphold different factors, such as new call blocking probability, handover call dropping probability, channel utilization, etc. Designing an optimal CAC scheme is still a challenging task due to having a number of considerable factors, such as new call blocking probability, handover call dropping probability, channel utilization, traffic rate, etc. Among existing CAC schemes such as, fixed guard band (FGB), fractional guard channel (FGC), limited fractional channel (LFC), and Uniform Fractional Channel (UFC), the LFC scheme is optimal considering the new call blocking and handover call dropping probability. However, this scheme does not consider channel utilization. In this paper, a CAC scheme, which is termed by a uniform fractional band (UFB) to overcome the limitations of existing schemes, is proposed. This scheme is oriented by priority and non-priority guard channels with a set of fractional channels instead of fractionizing the total channels like FGC and UFC schemes. These fractional channels in the UFB scheme accept new calls with a predefined uniform acceptance factor and assist the network in utilizing more channels. The mathematical models, operational benefits, and the limitations of existing CAC schemes are also discussed. Subsequently, we prepared a comparative study between the existing and proposed scheme in terms of the aforementioned QoS related factors. The numerical results we have obtained so far show that the proposed UFB scheme is an optimal CAC scheme in terms of QoS and resource utilization as compared to the existing schemes.

A Study on the Channel Assignment Scheme on Enhancing New Call Service in Wireless Network (무선 네트워크에서 신규 호 서비스 향상을 위한 채널할당에 관한 연구)

  • 임영훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9A
    • /
    • pp.1282-1289
    • /
    • 2000
  • In this paper we propose a Fractional Channel Reservation (FCS) scheme to satisfy a desired handoof dropping probability and to reduce the blocking probability of new calls using mobility characteristics and incoming handoff rate in mobile communication networks. When the ratio of the handoff call arrival rate is less then the ratio of the new call arrival rete, the proposed scheme is capable of determining the number of the guard channels which can guarantee the Quality of Service(QoS) in terms of the request handoff dropping probability and allocating dynamically the wireless channels the new calls according to the rest of the guard channels to reduce the new call blocking probability. Also we perform mathematical analysis and simulation to evaluate the performance of proposed scheme and compare to conventional guard channel scheme in terms of dropping probability blocking probability and the utilization efficiency of wireless channels.

  • PDF

Relay Station based Optimal Handoff Prioritization Control Algorithm (Relay Station 기반 최적 핸드오프 우선화 제어 알고리즘)

  • Yu, Hye-In;Kang, Hae-Lynn;Kim, Nak-Myeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.7
    • /
    • pp.24-31
    • /
    • 2009
  • Resource reservation scheme is an effective method to guarantee QoS for handoff calls in the next generation multimedia mobile communication systems, but it causes negative impacts on blocking probability of new calls. In this paper, to optimize the tradeoff between dropping probability of handoff calls and blocking probability of new calls, relay station based handoff prioritization control algorithm is proposed. In this algorithm, the relay station participates in handoff procedure and enables mobile stations to have guaranteed prompt service after handoff by providing highly efficient data transmission. In this paper, Markov chain models of the proposed handoff prioritization schemes are developed, and dropping probability of handoff packets and blocking probability of new packets are derived. By numerical analysis, the proposed algorithm has been proved to outperform conventional handoff prioritization schemes in terms of dropping probability of handoff packets and blocking Probability of new packets.

A New Channel Reservation Scheme for Soft Handoff Algorithms in Wireless Networks (무선망에서 소프트 핸드오프 알고리즘을 위한 새로운 대역폭 예약 기법)

  • Kwon Se-Dong;Park Hyun-Min
    • The KIPS Transactions:PartC
    • /
    • v.12C no.5 s.101
    • /
    • pp.701-708
    • /
    • 2005
  • The mobility prediction algorithm and the channel reservation scheme have been reported as an effective means to provide QoS guarantees and the efficient resource reservation in wireless networks. Among these prediction algorithms, the recently proposed Detailed-ZMHB algorithm makes use of the history of the user's positions within the current cell to predict the next cell, which provides the better prediction accuracy than the others. The handoff prioritizing schemes are proposed to provide improved performance at the expense of an increase in the blocking probability of new calls. In the soft handoff of the CDMA systems, a mobile can communicate via two adjacent cells simultaneously for a while before the actual handoff takes place. In this paper, we propose a new channel reservation scheme making use of the user mobility pattern information in order to reduce the call dropping probability. Our results show that the proposed scheme gives about 67.5-71.1$\%$ lower call dropping probability, compared to the existing scheme.

A New Fair Call Admission Control for Integrated Voice and Data Traffic in Wireless Mobile Networks

  • Hwang, Young Ha;Noh, Sung-Kee;Kim, Sang-Ha
    • Journal of Information Processing Systems
    • /
    • v.2 no.2
    • /
    • pp.107-113
    • /
    • 2006
  • It is essential to guarantee a handoff dropping probability below a predetermined threshold for wireless mobile networks. Previous studies have proposed admission control policies for integrated voice/data traffic in wireless mobile networks. However, since QoS has been considered only in terms of CDP (Call Dropping Probability), the result has been a serious CBP (Call Blocking Probability) unfairness problem between voice and data traffic. In this paper, we suggest a new admission control policy that treats integrated voice and data traffic fairly while maintaining the CDP constraint. For underprivileged data traffic, which requires more bandwidth units than voice traffic, the packet is placed in a queue when there are no available resources in the base station, instead of being immediately rejected. Furthermore, we have adapted the biased coin method concept to adjust unfairness in terms of CBP. We analyzed the system model of a cell using both a two-dimensional continuous-time Markov chain and the Gauss-Seidel method. Numerical results demonstrate that our CAC (Call Admission Control) scheme successfully achieves CBP fairness for voice and data traffic.

The study for enhancing new call service in mobile communication system (이동통신 시스템 기반 신규 호 서비스 향상에 관한 연구)

  • Park, Chi-Ho;Oh, Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.85-94
    • /
    • 2005
  • In this thesis, we propose a Speed Accommodation Priority Algorithm Scheme(SPAS) and Traffic Control Model Scheme (TCMS) to satisfy a desired handoff dropping probability and to reduce the blocking probability of new calls using mobility characteristics and handoff rate in mobile communication networks. The guard channels below threshold can guarantee the Quality of Service(QoS) in terms of the request handoff dropping probability and the guard channels above the threshold can be used to handle high priority new calls and high priority handoff calls. When the ratio of the handoff call arrival rate is less then the ratio of the new call arrival rate, the proposed method can guarantee the new call better than the previous guard channel scheme.

Call Admission Control Using Adaptive-MMOSPRED for Resource Prediction in Wireless Networks (무선망의 자원예측을 위한 Adaptive-MMOSPRED 기법을 사용한 호 수락제어)

  • Lee, Jin-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.1
    • /
    • pp.22-27
    • /
    • 2008
  • This paper presents adaptive-MMOSPRED method for prediction of resource demands requested by multimedia calls, and shows the performance of the call admission control based on proposed resource prediction method in multimedia wireless networks. The proposed method determines (I-CDP) random variables of the standard normal distribution by using LMS algorithm that minimize errors of prediction in resource demands, while parameters in an existing method are constant all through the prediction time. Our simulation results show that prediction error in adaptive-MMOSPRED method is much smaller than in fixed-MMOSPRED method. Also we can see via simulation the CAC performance based on the proposed method improves the new call blocking performance compared with the existing method under the desired handoff dropping probability.

  • PDF

Channel Allocation Using Mobile Mobility and Neural Net Spectrum Hole Prediction in Cellular-Based Wireless Cognitive Radio Networks (셀룰러 기반 무선 인지망에서 모바일 이동성과 신경망 스펙트럼 홀 예측에 의한 채널할당)

  • Lee, Jin-yi
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.347-352
    • /
    • 2017
  • In this paper, we propose a method that reduces mobile user's handover call dropping probability by using cognitive radio technology(CR) in cellular - based wireless cognitive radio networks. The proposed method predicts a cell to visit by Ziv-Lempel algorithm, and then supports mobile user with prediction of spectrum holes based on CR technology when allocated channels are short in the cell. We make neural network predict spectrum hole resources, and make handover calls use the resources before initial calls. Simulation results show CR technology has the capability to reduce mobile user handover call dropping probability in cellular mobile communication networks.