• Title/Summary/Keyword: and Tensile Testing

Search Result 880, Processing Time 0.025 seconds

Tensile Characterization of Ceramic Matrix Composites (CMCs) with Nondestructive Evaluation (NDE) Techniques

  • Kim, Jeongguk;Lee, Joon-Hyun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.190-194
    • /
    • 2003
  • Two different types of nondestructive evaluation (NDE) techniques were employed to investigate the tensile behavior of ceramic matrix composites (CMCs). Two NDE methods, ultrasonic testing (UT) and infrared (IR) thermography, were used to assess defects and/or damage evolution before and during mechanical testing. Prior to tensile testing, a UTC-scan and a xenon flash method were performed to obtain initial defect information in light of UT C-scans and thermal diffusivity maps, respectively. An IR camera was used for in-situ monitoring of progressive damages. The IR camera measured temperature changes during tensile testing. This paper has presented the feasibility of using NDE techniques to interpret structural performance of CMCs.

  • PDF

Testing Equipments for the Evaluation of Dynamic Tensile characteristics and the Crashworthiness of Auto-body Members (차체용 부재의 동적 인장 특성 및 충돌 특성 평가를 위한 시험장비 개발)

  • Huh, H.;Kim, S.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.21-24
    • /
    • 2007
  • This paper deals with introduction of testing equipments for the evaluation of dynamic tensile characteristics of auto-body steel sheets and the crashworthiness of auto-body members. The servo-hydraulic high speed material testing machine was developed for tensile tests at the intermediate strain rate to obtain the tensile material properties at the strain rate under 500/sec. The split Hopkinson bar apparatus using the elastic wave was developed for dynamic material characteristics at the high strain rate ranged from 1,000 to 10,000/sec. The servo-hydraulic high speed crash testing machine is the equipment for the evaluation of the collapse load and crashworthiness of auto-body members. High speed carrying truck crashes to specimen with the maximum velocity of 17 m/sec.

  • PDF

Measurement of mechanical properties of SU-8 thin film by tensile testing (단축 인장에 의한 SU-8박막의 기계적 물성 측정)

  • 백동천;박태상;이순복;이낙규
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.2
    • /
    • pp.23-26
    • /
    • 2004
  • Thin film is one of the most general structures used in micro-electro-mechanical systems (MEMS). To measure the mechanical properties of SU-8 film, tensile testing was adopted which offers not only elastic modulus but also yield strength and plastic deformation by load-displacement curve. Tensile testing system was constructed with linear guided servo motor for actuation, load cell for force measurement and dual microscope for strain measurement.

  • PDF

Numerical simulation of compressive to tensile load conversion for determining the tensile strength of ultra-high performance concrete

  • Haeri, Hadi;Mirshekari, Nader;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.605-617
    • /
    • 2020
  • In this study, the experimental tests for the direct tensile strength measurement of Ultra-High Performance Concrete (UHPC) were numerically modeled by using the discrete element method (circle type element) and Finite Element Method (FEM). The experimental tests used for the laboratory tensile strength measurement is the Compressive-to-Tensile Load Conversion (CTLC) device. In this paper, the failure process including the cracks initiation, propagation and coalescence studied and then the direct tensile strength of the UHPC specimens measured by the novel apparatus i.e., CTLC device. For this purpose, the UHPC member (each containing a central hole) prepared, and situated in the CTLC device which in turn placed in the universal testing machine. The direct tensile strength of the member is measured due to the direct tensile stress which is applied to this specimen by the CTLC device. This novel device transferring the applied compressive load to that of the tensile during the testing process. The UHPC beam specimen of size 150 × 60 × 190 mm and internal hole of 75 × 60 mm was used in this study. The rate of the applied compressive load to CTLC device through the universal testing machine was 0.02 MPa/s. The direct tensile strength of UHPC was found using a new formula based on the present analyses. The numerical simulation given in this study gives the tensile strength and failure behavior of the UHPC very close to those obtained experimentally by the CTLC device implemented in the universal testing machine. The percent variation between experimental results and numerical results was found as nearly 2%. PFC2D simulations of the direct tensile strength measuring specimen and ABAQUS simulation of the tested CTLC specimens both demonstrate the validity and capability of the proposed testing procedure for the direct tensile strength measurement of UHPC specimens.

Wide-Width Tensile Strength Properties of Geogrids according to Specimen Length and Testing Speed (시료크기 및 인장속도에 따른 지오그리드의 광폭인장강도 평가)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Oh, Se-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.2
    • /
    • pp.21-26
    • /
    • 2007
  • The tensile properties of geogrid are affected by such factors as temperature, specimen length, gauge length, testing speed and measuring equipment. The tensile strength of geogrids can be determined by ASTM 06637 and ISO 10319. The main differences between two testing methods are testing speed and specimen length. This paper presents the results of the wide-width tensile tests for three geogrids according to different specimen length and tension speed.

  • PDF

Infrared Thermographic Monitoring for Failure Characterization in Railway Axle Materials (철도차량 차축 재료의 파괴특성 적외선열화상 모니터링)

  • Kim, Jeong-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.116-120
    • /
    • 2010
  • The wheelset, an assembly of wheel and axle, is one of important parts in railway bogie, directly related with the running safety of railway rolling stock. In this investigation, the tensile failure behavior of railway axle materials was investigated. The tensile coupons were prepared from the actual rolling stock parts, which were operated over 20 years. The tensile testing was performed according to the KS guideline. During tensile testing, an infrared camera was employed to monitor temperature changes in specimen as well as demonstrate temperature contour in terms of infrared thermographic images. The thermographic images of tensile specimens showed comparable results with mechanical behavior of tensile materials. In this paper, the failure mode and behavior of railway axle materials were provided with the aid of infrared thermography technique.

A study on direct tensile strength of cement soil (시멘트 혼합토의 인장강도에 관한 연구)

  • Kim, Chang-Woo;Park, Sung-Sik;Choi, Hyun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.584-594
    • /
    • 2010
  • It is difficult to prepare a specimen for directly testing a tensile strength of soils. Therefore, a tensile strength of soils has been measured indirectly. In this study, a mold and sample preparation tool for directly testing a tensile strength of soils has been developed and a tensile strength of weakly cemented sand was measured by using such device. A compressive strength of the cemented sand was also measured and its value was 30 times greater than its tensile strength.

  • PDF

Effects of Pre-Strains on Failure Assessment Analysis to API 5L X65 Pipeline

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik;Seok, Chang-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.219-223
    • /
    • 2009
  • This paper prescribed the structural integrity of the API 5L X65 pipeline subjected to tensile pre-strain. The effects of pre-strain on the mechanical properties of API 5L X65 pipe were substantially investigated through a variety of the experimental procedures. Axial tensile pre-strain of 1.5, 5 and 10% was applied to plate-type tensile specimens cut from the pipe body prior to mechanical testing. Tensile test revealed that yield strength and tensile strength were increased with increasing tensile pre-strain. The increasing rate of the yield strength owing to the pre-strain is greater than that of the tensile strength. However, the pre-strain up to 5% had a little effect on the decreasing of the fracture toughness. The structural integrity of the API 5L X65 pipeline subjected to large plastic deformation was evaluated through the fitness-for service code.

A Novel Tensile Specimen and Tensile Tester for Mechanical Properties of Thin Films (박막의 기계적 물성을 위한 새로운 인장 시편 및 인장 시험기)

  • Park, Jun-Hyub;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.644-650
    • /
    • 2007
  • Mechanical property evaluation of micrometer-sized structures is necessary to help design reliable microelectromechanical systems(MEMS) devices. Most material properties are known to exhibit dependence on specimen size and such properties of microscale structures are not well characterized. This paper describes techniques developed for tensile testing of thin film used in MEMS. Epi-polycrystalline silicon is currently the most widely used material, and its tensile strength has been measured as 1.52GPa. We have developed a tensile testing machine for testing microscale specimen using electro-magnetic actuator. The field magnet and the moving coil taken from an audio-speaker were utilized as the components of the actuator. Structure of specimen was designed and manufactured for easy handling and alignment. In addition to the static tensile tests, it is described that new techniques and procedures can be adopted for high cycle fatigue test of a thin film.

Experimental and numerical investigation on the thickness effect of concrete specimens in a new tensile testing apparatus

  • Lei Zhou;Hadi Haeri;Vahab Sarfarazi;Mohammad Fatehi Marji;A.A. Naderi;Mohammadreza Hassannezhad Vayani
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.71-84
    • /
    • 2023
  • In this paper, the effects of the thickness of cubic samples on the tensile strength of concrete blocks were studied using experimental tests in the laboratory and numerical simulation by the particle flow code in three dimensions (PFC3D). Firstly, the physical concrete blocks with dimensions of 150 mm×190 mm (width×height) were prepared. Then, three specimens for each of seven different samples with various thicknesses were built in the laboratory. Simultaneously with the experimental tests, their numerical simulations were performed with PFC3D models. The widths, heights, and thicknesses of the numerical models were the same as those of the experimental samples. These samples were tested with a new tensile testing apparatus. The loading rate was kept at 1 kg/sec during the testing operation. Based on these analyses, it is concluded that when the thickness was less than 5 cm, the tensile strength decreased by increasing the sample thickness. On the other hand, the tensile strength was nearly constant when the sample thickness was raised to more than 5 cm (which can be regarded as a threshold limit for the specimens' thickness). The numerical outputs were similar to the experimental results, demonstrating the validity of the present analyses.