• Title/Summary/Keyword: anchorage-independent growth

Search Result 24, Processing Time 0.019 seconds

Antitumor Activity of LB42907, a Potent and Selective Farnesyltransferase Inhibitor: Synergistic Effect in Combination with Other Anticancer Drugs

  • Park, Ji-Hyun;Koo, Sun-Young;Kim, Dong-Myung;Kim, Kwi-Hwa;Jeong, Shin-Wu;Chung, Hyun-Ho;Cho, Heung-Soo;Park, Joong-Hoon;Yim, Hyeon-Joo;Lee, Jin-Ho;Koh, Jong-Sung;Kim, Se-Mi
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1303-1310
    • /
    • 2008
  • Inhibitors of farnesyltransferase (FT), a key enzyme in the post-translational modifications of Ras proteins, have been extensively studied as novel anticancer agents in the preclinical stages, some of which are currently in clinical development. Previously, it has been reported that a novel FT inhibitor LB42907 inhibits Ras farnesylation in the nanomolar range in vitro. The aim of this study was to assess the antitumor efficacy of LB42907 in vitro and in vivo. Anchorage-independent growth of various human tumor cell lines was potently inhibited by treatment with LB42907, comparable to other FT inhibitors in clinical development. In the nude mouse, oral administration of LB42907 demonstrated potent antitumor activity in several human tumor xenograft models including bladder, lung and pancreas origin. Interestingly, significant tumor regression in EJ (bladder) and A549 (lung) xenografts was induced by LB42907 treatment. The effectiveness of LB42907 was also investigated in simultaneous combination with paclitaxel, vincristine, cisplatin or gemcitabine against NCI-H460, A549, and HCT116 cells in vitro using median-effect analysis. LB42907 markedly synergized with most anticancer drugs tested in this study in NCI-H460 cell. In contrast, LB42907 displayed antagonism or partial synergism with these drugs in A549 and HCT116 cells, depending on the class of combined drugs and/ or the level of cytotoxicity. Our results demonstrate that LB42907 is an effective antitumor agent in vitro and in vivo and combination of LB42907 with other chemotherapeutic drugs results in synergistic or antagonistic effects mainly in a cell line-dependent manner. Further preclinical study is warranted.

A Novel Pyruvate Kinase M2 Activator Compound that Suppresses Lung Cancer Cell Viability under Hypoxia

  • Kim, Dong Joon;Park, Young Soo;Kim, Nam Doo;Min, Sang Hyun;You, Yeon-Mi;Jung, Yuri;Koo, Han;Noh, Hanmi;Kim, Jung-Ae;Park, Kyung Chan;Yeom, Young Il
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.373-379
    • /
    • 2015
  • Pyruvate kinase M2 isoform (PKM2), a rate-limiting enzyme in the final step of glycolysis, is known to be associated with the metabolic rewiring of cancer cells, and considered an important cancer therapeutic target. Herein, we report a novel PKM2 activator, PA-12, which was identified via the molecular docking-based virtual screening. We demonstrate that PA-12 stimulates the pyruvate kinase activity of recombinant PKM2 in vitro, with a half-maximal activity concentration of $4.92{\mu}M$, and effectively suppresses both anchorage-dependent and -independent growth of lung cancer cells in non-essential amino acid-depleted medium. In addition, PA-12 blocked the nuclear translocalization of PKM2 in lung cancer cells, resulting in the inhibition of hypoxia response element (HRE)-mediated reporter activity as well as hypoxia-inducible factor 1 (HIF-1) target gene expression, eventually leading to the suppression of cell viability under hypoxia. We also verified that the effects of PA-12 were dependent on PKM2 expression in cancer cells, demonstrating the specificity of PA-12 for PKM2 protein. Taken together, our data suggest that PA-12 is a novel and potent PKM2 activator that has therapeutic implications for lung cancer.

Characterization of TNNC1 as a Novel Tumor Suppressor of Lung Adenocarcinoma

  • Kim, Suyeon;Kim, Jaewon;Jung, Yeonjoo;Jun, Yukyung;Jung, Yeonhwa;Lee, Hee-Young;Keum, Juhee;Park, Byung Jo;Lee, Jinseon;Kim, Jhingook;Lee, Sanghyuk;Kim, Jaesang
    • Molecules and Cells
    • /
    • v.43 no.7
    • /
    • pp.619-631
    • /
    • 2020
  • In this study, we describe a novel function of TNNC1 (Troponin C1, Slow Skeletal and Cardiac Type), a component of actin-bound troponin, as a tumor suppressor of lung adenocarcinoma (LUAD). First, the expression of TNNC1 was strongly down-regulated in cancer tissues compared to matched normal lung tissues, and down-regulation of TNNC1 was shown to be strongly correlated with increased mortality among LUAD patients. Interestingly, TNNC1 expression was enhanced by suppression of KRAS, and ectopic expression of TNNC1 in turn inhibited KRASG12D-mediated anchorage independent growth of NIH3T3 cells. Consistently, activation of KRAS pathway in LUAD patients was shown to be strongly correlated with down-regulation of TNNC1. In addition, ectopic expression of TNNC1 inhibited colony formation of multiple LUAD cell lines and induced DNA damage, cell cycle arrest and ultimately apoptosis. We further examined potential correlations between expression levels of TNNC1 and various clinical parameters and found that low-level expression is significantly associated with invasiveness of the tumor. Indeed, RNA interference-mediated down-regulation of TNNC1 led to significant enhancement of invasiveness in vitro. Collectively, our data indicate that TNNC1 has a novel function as a tumor suppressor and is targeted for down-regulation by KRAS pathway during the carcinogenesis of LUAD.

TIMP-2 Gene Transfer Via Adenovirus Inhibits the Invasion of Lung Cancer Cell (TIMP-2 유전자 재조합 아데노바이러스의 폐암세포 침윤 억제 효과)

  • Oh, Yeon-Mok;Lee, Jae-Ho;Yoo, Chul-Gyu;Chung, Hee-Soon;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Lee, Choon-Taek
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.2
    • /
    • pp.189-197
    • /
    • 2000
  • Background : Tissue inhibitor of metalloproteinase is a natural inhibitor that counteracts pro teolytic enzymes essential to the invasion of cancer cell. Whether or not TIMP-2 gene transfer via adenovirus could inhibit the invasion of lung cancer cell iη vitro was evaluated for the future purpose of gene therapy against lung cancer. Methods : Recombinant adenovirus-TIMP-2(Ad-TIMP-2) was generated by homologous recombination after pACCMV-TIMP-2 and pJM17 were cotransfected into 293 cell by standard calcium phosphate coprecipitate method. Calu-6, one of the most invasive lung cancer cells, was transduced with Ad-TIMP-2 or Ad-$\beta$gal. Anchorage-independent growth and invasiveness were assessed by soft agar clonogenicity assay and invasion assay using two-chamber, well divided by matrigel. Results : Ad-TIMP-2 transduced calu-6 cells produced biologically active TIMP-2 more than 50 times more than parental calu-6. TIMP-2 gene transfer did not suppress the in vitro tumorigenicity. However, two chamber well assay revealed that Ad-TIMP-2 transduction reduced the invasiveness of calu-6 efficiently (12% compared with parental cell) even at low 10moi. Conclusion : Even though TIMP-2 gene transfer did not inhibit in vitro tumorigenicity, it did inhibit invasion of lung cancer cell in vitro. The inhibition of invasion by Ad-TIMP-2 may be a useful strategy for the treatment of lung cancer.

  • PDF