DOI QR코드

DOI QR Code

Characterization of TNNC1 as a Novel Tumor Suppressor of Lung Adenocarcinoma

  • Kim, Suyeon (Department of Life Science, Ewha Womans University) ;
  • Kim, Jaewon (Department of Life Science, Ewha Womans University) ;
  • Jung, Yeonjoo (Department of Life Science, Ewha Womans University) ;
  • Jun, Yukyung (Department of Life Science, Ewha Womans University) ;
  • Jung, Yeonhwa (Ewha Research Center for Systems Biology, Ewha Womans University) ;
  • Lee, Hee-Young (Ewha Research Center for Systems Biology, Ewha Womans University) ;
  • Keum, Juhee (Ewha Research Center for Systems Biology, Ewha Womans University) ;
  • Park, Byung Jo (Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lee, Jinseon (Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kim, Jhingook (Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lee, Sanghyuk (Department of Life Science, Ewha Womans University) ;
  • Kim, Jaesang (Department of Life Science, Ewha Womans University)
  • Received : 2020.03.20
  • Accepted : 2020.04.17
  • Published : 2020.07.31

Abstract

In this study, we describe a novel function of TNNC1 (Troponin C1, Slow Skeletal and Cardiac Type), a component of actin-bound troponin, as a tumor suppressor of lung adenocarcinoma (LUAD). First, the expression of TNNC1 was strongly down-regulated in cancer tissues compared to matched normal lung tissues, and down-regulation of TNNC1 was shown to be strongly correlated with increased mortality among LUAD patients. Interestingly, TNNC1 expression was enhanced by suppression of KRAS, and ectopic expression of TNNC1 in turn inhibited KRASG12D-mediated anchorage independent growth of NIH3T3 cells. Consistently, activation of KRAS pathway in LUAD patients was shown to be strongly correlated with down-regulation of TNNC1. In addition, ectopic expression of TNNC1 inhibited colony formation of multiple LUAD cell lines and induced DNA damage, cell cycle arrest and ultimately apoptosis. We further examined potential correlations between expression levels of TNNC1 and various clinical parameters and found that low-level expression is significantly associated with invasiveness of the tumor. Indeed, RNA interference-mediated down-regulation of TNNC1 led to significant enhancement of invasiveness in vitro. Collectively, our data indicate that TNNC1 has a novel function as a tumor suppressor and is targeted for down-regulation by KRAS pathway during the carcinogenesis of LUAD.

Keywords

References

  1. Abbas, T. and Dutta, A. (2009). p21 in cancer: intricate networks and multiple activities. Nat. Rev. Cancer 9, 400-414. https://doi.org/10.1038/nrc2657
  2. Berezowsky, C. and Bag, J. (1992). Slow troponin C is present in both muscle and nonmuscle cells. Biochem. Cell Biol. 70, 691-697. https://doi.org/10.1139/o92-105
  3. Brainard, J. and Farver, C. (2019). The diagnosis of non-small cell lung cancer in the molecular era. Mod. Pathol. 32(Suppl 1), 16-26. https://doi.org/10.1038/s41379-018-0156-x
  4. Brewer, L.A. (1977). Patterns of survival in lung cancer. Chest 71, 644-650. https://doi.org/10.1378/chest.71.5.644
  5. Cancer Genome Atlas Research Network (2014). Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543-550. https://doi.org/10.1038/nature13385
  6. Casas-Tinto, S., Maraver, A., Serrano, M., and Ferrus, A. (2016). Troponin-I enhances and is required for oncogenic overgrowth. Oncotarget 7, 52631-52642. https://doi.org/10.18632/oncotarget.10616
  7. Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., et al. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401-404. https://doi.org/10.1158/2159-8290.CD-12-0095
  8. Chase, P.B., Szczypinski, M.P., and Soto, E.P. (2013). Nuclear tropomyosin and troponin in striated muscle: new roles in a new locale? J. Muscle. Res. Cell Motil. 34, 275-284. https://doi.org/10.1007/s10974-013-9356-7
  9. Chen, C., Liu, J.B., Bian, Z.P., Xu, J.D., Wu, H.F., Gu, C.R., Shi, Y., Zhang, J.N., Chen, X.J., and Yang, D. (2014). Cardiac troponin I is abnormally expressed in non-small cell lung cancer tissues and human cancer cells. Int. J. Clin. Exp. Pathol. 7, 1314-1324.
  10. Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1.
  11. Geissmann, Q. (2013). OpenCFU, a new free and open-source software to count cell colonies and other circular objects. PLoS One 8, e54072. https://doi.org/10.1371/journal.pone.0054072
  12. Hanzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7. https://doi.org/10.1186/1471-2105-14-S16-S7
  13. Hata, T., Yamamoto, H., Ngan, C.Y., Koi, M., Takagi, A., Damdinsuren, B., Yasui, M., Fujie, Y., Matsuzaki, T., Hemmi, H., et al. (2005). Role of p21waf1/cip1 in effects of oxaliplatin in colorectal cancer cells. Mol. Cancer Ther. 4, 1585-1594. https://doi.org/10.1158/1535-7163.MCT-05-0011
  14. Johnston, J.R., Chase, P.B., and Pinto, J.R. (2018). Troponin through the looking-glass: emerging roles beyond regulation of striated muscle contraction. Oncotarget 9, 1461-1482. https://doi.org/10.18632/oncotarget.22879
  15. Jung, Y., Jun, Y., Lee, H.Y., Kim, S., Keum, J., Lee, Y.S., Cho, Y.B., Lee, S., and Kim, J. (2015a). Characterization of SLC22A18 as a tumor suppressor and novel biomarker in colorectal cancer. Oncotarget 6, 25368-25380. https://doi.org/10.18632/oncotarget.4681
  16. Jung, Y., Yong, S., Kim, P., Lee, H.Y., Keum, J., Lee, S., and Kim, J. (2015b). VAMP2-NRG1 fusion gene is a novel oncogenic driver of non-small-cell lung adenocarcinoma. J. Thorac. Oncol. 10, 1107-1111. https://doi.org/10.1097/jto.0000000000000544
  17. Kim, J., Lo, L., Dormand, E., and Anderson, D.J. (2003). SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38, 17-31. https://doi.org/10.1016/S0896-6273(03)00163-6
  18. Law, C.W., Chen, Y., Shi, W., and Smyth, G.K. (2014). Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29. https://doi.org/10.1186/gb-2014-15-2-r29
  19. Leung, C.S., Yeung, T.L., Yip, K.P., Pradeep, S., Balasubramanian, L., Liu, J., Wong, K.K., Mangala, L.S., Armaiz-Pena, G.N., Lopez-Berestein, G., et al. (2014). Calcium-dependent FAK/CREB/TNNC1 signalling mediates the effect of stromal MFAP5 on ovarian cancer metastatic potential. Nat. Commun. 5, 5092. https://doi.org/10.1038/ncomms6092
  20. Li, B. and Dewey, C.N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323. https://doi.org/10.1186/1471-2105-12-323
  21. Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdottir, H., Tamayo, P., and Mesirov, J.P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739-1740. https://doi.org/10.1093/bioinformatics/btr260
  22. Ma, Y., Silveri, L., LaCava, J., and Dokudovskaya, S. (2017). Tumor suppressor NPRL2 induces ROS production and DNA damage response. Sci. Rep. 7, 15311. https://doi.org/10.1038/s41598-017-15497-0
  23. Moses, M.A., Wiederschain, D., Wu, I., Fernandez, C.A., Ghazizadeh, V., Lane, W.S., Flynn, E., Sytkowski, A., Tao, T., and Langer, R. (1999). Troponin I is present in human cartilage and inhibits angiogenesis. Proc. Natl. Acad. Sci. U. S. A. 96, 2645-2650. https://doi.org/10.1073/pnas.96.6.2645
  24. Normand, G., Hemmati, P.G., Verdoodt, B., von Haefen, C., Wendt, J., Guner, D., May, E., Dorken, B., and Daniel, P.T. (2005). p14ARF induces G2 cell cycle arrest in p53- and p21-deficient cells by down-regulating p34cdc2 kinase activity. J. Biol. Chem. 280, 7118-7130. https://doi.org/10.1074/jbc.M412330200
  25. Pao, W. and Girard, N. (2011). New driver mutations in non-small-cell lung cancer. Lancet Oncol. 12, 175-180. https://doi.org/10.1016/S1470-2045(10)70087-5
  26. Sahota, V.K., Grau, B.F., Mansilla, A., and Ferrus, A. (2009). Troponin I and Tropomyosin regulate chromosomal stability and cell polarity. J. Cell Sci. 122(Pt 15), 2623-2631. https://doi.org/10.1242/jcs.050880
  27. Schmidt, K., Hoffend, J., Altmann, A., Kiessling, F., Strauss, L., Koczan, D., Mier, W., Eisenhut, M., Kinscherf, R., and Haberkorn, U. (2006). Troponin I overexpression inhibits tumor growth, perfusion, and vascularization of morris hepatoma. J. Nucl. Med. 47, 1506-1514.
  28. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671-675. https://doi.org/10.1038/nmeth.2089
  29. Shimizu, K., Yoshida, J., Nagai, K., Nishimura, M., Ishii, G., Morishita, Y., and Nishiwaki, Y. (2005). Visceral pleural invasion is an invasive and aggressive indicator of non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 130, 160-165. https://doi.org/10.1016/j.jtcvs.2004.11.021
  30. Siegel, R.L., Miller, K.D., and Jemal, A. (2018). Cancer statistics, 2018. CA Cancer J. Clin. 68, 7-30. https://doi.org/10.3322/caac.21442
  31. Wang, K., Singh, D., Zeng, Z., Coleman, S.J., Huang, Y., Savich, G.L., He, X., Mieczkowski, P., Grimm, S.A., Perou, C.M., et al. (2010). MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic. Acids. Res. 38, e178. https://doi.org/10.1093/nar/gkq622
  32. Yu, N., Yong, S., Kim, H.K., Choi, Y.L., Jung, Y., Kim, D., Seo, J., Lee, Y.E., Baek, D., Lee, J., et al. (2019). Identification of tumor suppressor miRNAs by integrative miRNA and mRNA sequencing of matched tumor-normal samples in lung adenocarcinoma. Mol. Oncol. 13, 1356-1368. https://doi.org/10.1002/1878-0261.12478

Cited by

  1. Identification of Differentially Expressed and Prognostic lncRNAs for the Construction of ceRNA Networks in Lung Adenocarcinoma vol.2021, 2020, https://doi.org/10.1155/2021/2659550