DOI QR코드

DOI QR Code

A Novel Pyruvate Kinase M2 Activator Compound that Suppresses Lung Cancer Cell Viability under Hypoxia

  • Kim, Dong Joon (Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Young Soo (Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Nam Doo (New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Min, Sang Hyun (New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • You, Yeon-Mi (Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jung, Yuri (Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Koo, Han (Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Noh, Hanmi (Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Jung-Ae (Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Kyung Chan (Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Yeom, Young Il (Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2014.11.12
  • Accepted : 2014.12.17
  • Published : 2015.04.30

Abstract

Pyruvate kinase M2 isoform (PKM2), a rate-limiting enzyme in the final step of glycolysis, is known to be associated with the metabolic rewiring of cancer cells, and considered an important cancer therapeutic target. Herein, we report a novel PKM2 activator, PA-12, which was identified via the molecular docking-based virtual screening. We demonstrate that PA-12 stimulates the pyruvate kinase activity of recombinant PKM2 in vitro, with a half-maximal activity concentration of $4.92{\mu}M$, and effectively suppresses both anchorage-dependent and -independent growth of lung cancer cells in non-essential amino acid-depleted medium. In addition, PA-12 blocked the nuclear translocalization of PKM2 in lung cancer cells, resulting in the inhibition of hypoxia response element (HRE)-mediated reporter activity as well as hypoxia-inducible factor 1 (HIF-1) target gene expression, eventually leading to the suppression of cell viability under hypoxia. We also verified that the effects of PA-12 were dependent on PKM2 expression in cancer cells, demonstrating the specificity of PA-12 for PKM2 protein. Taken together, our data suggest that PA-12 is a novel and potent PKM2 activator that has therapeutic implications for lung cancer.

Keywords

References

  1. Amelio, I., Cutruzzola, F., Antonov, A., Agostini, M., and Melino, G. (2014). Serine and glycine metabolism in cancer. Trends Biochem. Sci. 39, 191-198. https://doi.org/10.1016/j.tibs.2014.02.004
  2. Anastasiou, D., Poulogiannis, G., Asara, J.M., Boxer, M.B., Jiang, J.K., Shen, M., Bellinger, G., Sasaki, A.T., Locasale, J.W., Auld, D.S., et al. (2011). Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278-1283. https://doi.org/10.1126/science.1211485
  3. Anastasiou, D., Yu, Y., Israelsen, W.J., Jiang, J.K., Boxer, M.B., Hong, B.S., Tempel, W., Dimov, S., Shen, M., Jha, A., et al. (2012). Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat. Chem. Biol. 8, 839-847. https://doi.org/10.1038/nchembio.1060
  4. Bluemlein, K., Gruning, N.M., Feichtinger, R.G., Lehrach, H., Kofler, B., and Ralser, M. (2011). No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis. Oncotarget 2, 393-400. https://doi.org/10.18632/oncotarget.278
  5. Boxer, M.B., Jiang, J.K., Vander Heiden, M.G., Shen, M., Skoumbourdis, A.P., Southall, N., Veith, H., Leister, W., Austin, C.P., Park, H.W., et al. (2010). Evaluation of substituted N,N'-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. J. Med. Chem. 53, 1048-1055. https://doi.org/10.1021/jm901577g
  6. Chaneton, B., and Gottlieb, E. (2012). Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer. Trends Biochem. Sci. 37, 309-316. https://doi.org/10.1016/j.tibs.2012.04.003
  7. Christofk, H.R., Vander Heiden, M.G., Harris, M.H., Ramanathan, A., Gerszten, R.E., Wei, R., Fleming, M.D., Schreiber, S.L., and Cantley, L.C. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230-233. https://doi.org/10.1038/nature06734
  8. Dang, C.V. (2012). Links between metabolism and cancer. Genes Dev. 26, 877-890. https://doi.org/10.1101/gad.189365.112
  9. DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G., and Thompson, C.B. (2008). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11-20. https://doi.org/10.1016/j.cmet.2007.10.002
  10. Ding, Y., Wang, S., Zhang, M.M., Guo, Y., Yang, Y., Weng, S.Q., Wu, J. M., Qiu, X., and Ding, M.P. (2010). Fructose-1,6-diphosphate inhibits seizure acquisition in fast hippocampal kindling. Neurosci. Lett. 477, 33-36. https://doi.org/10.1016/j.neulet.2010.04.030
  11. Dombrauckas, J.D., Santarsiero, B.D., and Mesecar, A.D. (2005). Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 44, 9417-9429. https://doi.org/10.1021/bi0474923
  12. Gao, X., Wang, H., Yang, J.J., Liu, X., and Liu, Z. R. (2012). Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol. Cell 45, 598-609. https://doi.org/10.1016/j.molcel.2012.01.001
  13. Gruning, N.M., Rinnerthaler, M., Bluemlein, K., Mulleder, M., Wamelink, M.M., Lehrach, H., Jakobs, C., Breitenbach, M. and Ralser, M. (2011). Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells. Cell Metab. 14, 415-427. https://doi.org/10.1016/j.cmet.2011.06.017
  14. Higgins, M.J., and Baselga, J. (2011). Targeted therapies for breast cancer. J. Clin. Invest. 121, 3797-3803. https://doi.org/10.1172/JCI57152
  15. Imai, K., and Takaoka, A. (2006) Comparing antibody and small-molecule therapies for cancer. Nat. Rev. Cancer 6, 714-727. https://doi.org/10.1038/nrc1913
  16. King, A., and Gottlieb, E. (2009). Glucose metabolism and programmed cell death: an evolutionary and mechanistic perspective. Curr. Opin. Cell Biol. 21, 885-893. https://doi.org/10.1016/j.ceb.2009.09.009
  17. Kroemer, G., and Pouyssegur, J. (2008). Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472-482. https://doi.org/10.1016/j.ccr.2008.05.005
  18. Kung, C., Hixon, J., Choe, S., Marks, K., Gross, S., Murphy, E., DeLaBarre, B., Cianchetta, G., Sethumadhavan, S., Wang, X., et al. (2012). Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem. Biol. 19, 1187-1198. https://doi.org/10.1016/j.chembiol.2012.07.021
  19. Luo, W., Hu, H., Chang, R., Zhong, J., Knabel, M., O'Meally, R., Cole, R.N., Pandey, A., and Semenza, G.L. (2011). Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145, 732-744. https://doi.org/10.1016/j.cell.2011.03.054
  20. Luo, W., and Semenza, G.L. (2011). Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells. Oncotarget 2, 551-556. https://doi.org/10.18632/oncotarget.299
  21. Lv, L., Li, D., Zhao, D., Lin, R., Chu, Y., Zhang, H., Zha, Z., Liu, Y., Li, Z., Xu, Y., et al. (2011). Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol. Cell 42, 719-730. https://doi.org/10.1016/j.molcel.2011.04.025
  22. Parnell, K.M., Foulks, J.M., Nix, R.N., Clifford, A., Bullough, J., Luo, B., Senina, A., Vollmer, D., Liu, J., McCarthy, V., et al. (2013). Pharmacologic activation of PKM2 slows lung tumor xenograft growth. Mol. Cancer Ther. 12, 1453-1460. https://doi.org/10.1158/1535-7163.MCT-13-0026
  23. Sliwoski, G., Kothiwale, S., Meiler, J., and Lowe, E.W., Jr. (2014). Computational methods in drug discovery. Pharmacol. Rev. 66, 334-395.
  24. Tennant, D.A., Duran, R.V., Boulahbel, H., and Gottlieb, E. (2009). Metabolic transformation in cancer. Carcinogenesis 30, 1269-1280. https://doi.org/10.1093/carcin/bgp070
  25. Tennant, D.A., Duran, R.V., and Gottlieb, E. (2010). Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 10, 267-277. https://doi.org/10.1038/nrc2817
  26. Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033. https://doi.org/10.1126/science.1160809
  27. Walsh, M.J., Brimacombe, K.R., Veith, H., Bougie, J.M., Daniel, T., Leister, W., Cantley, L.C., Israelsen, W.J., Vander Heiden, M.G., Shen, M., et al. (2011). 2-Oxo-N-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg. Med. Chem. Lett. 21, 6322-6327. https://doi.org/10.1016/j.bmcl.2011.08.114
  28. Wang, H.J., Hsieh, Y.J., Cheng, W.C., Lin, C.P., Lin, Y.S., Yang, S.F., Chen, C.C., Izumiya, Y., Yu, J.S., Kung, H.J., et al. (2014). JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1alpha-mediated glucose metabolism. Proc. Natl. Acad. Sci. USA 111, 279-284. https://doi.org/10.1073/pnas.1311249111
  29. Yang, W., Xia, Y., Hawke, D., Li, X., Liang, J., Xing, D., Aldape, K., Hunter, T., Alfred Yung, W. K. and Lu, Z. (2012a). PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150, 685-696. https://doi.org/10.1016/j.cell.2012.07.018
  30. Yang, W., Zheng, Y., Xia, Y., Ji, H., Chen, X., Guo, F., Lyssiotis, C. A., Aldape, K., Cantley, L.C., and Lu, Z. (2012b). ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell. Biol. 14, 1295-1304. https://doi.org/10.1038/ncb2629

Cited by

  1. Clinical, cellular, and bioinformatic analyses reveal involvement of WRAP53 overexpression in carcinogenesis of lung adenocarcinoma vol.39, pp.3, 2017, https://doi.org/10.1177/1010428317694309
  2. Discovery and structure-guided fragment-linking of 4-(2,3-dichlorobenzoyl)-1-methyl-pyrrole-2-carboxamide as a pyruvate kinase M2 activator vol.25, pp.13, 2017, https://doi.org/10.1016/j.bmc.2017.05.004
  3. Pyruvate kinase isoenzyme M2 is a therapeutic target of gemcitabine-resistant pancreatic cancer cells vol.336, pp.1, 2015, https://doi.org/10.1016/j.yexcr.2015.05.017
  4. PHD3 is a transcriptional coactivator of HIF-1α in nucleus pulposus cells independent of the PKM2-JMJD5 axis vol.31, pp.9, 2017, https://doi.org/10.1096/fj.201601291R
  5. Computer-aided identification of a novel pyruvate kinase M2 activator compound pp.09607722, 2018, https://doi.org/10.1111/cpr.12509
  6. Identification of a new pyruvate kinase M2 isoform (PKM2) activator for the treatment of non-small-cell lung cancer (NSCLC) pp.17470277, 2018, https://doi.org/10.1111/cbdd.13354
  7. Pyruvate kinase activators as a therapy target: a patent review 2011-2017 vol.28, pp.1, 2018, https://doi.org/10.1080/13543776.2018.1391218
  8. Targeting energy metabolism to eliminate cancer cells vol.10, pp.None, 2018, https://doi.org/10.2147/cmar.s167424
  9. Pyruvate Kinase M2: a Metabolic Bug in Re-Wiring the Tumor Microenvironment vol.12, pp.2, 2019, https://doi.org/10.1007/s12307-019-00226-0