• Title/Summary/Keyword: analytical threshold

Search Result 172, Processing Time 0.024 seconds

Automatic Estimation of Threshold Values for Change Detection of Multi-temporal Remote Sensing Images (다중시기 원격탐사 화상의 변화탐지를 위한 임계치 자동 추정)

  • 박노욱;지광훈;이광재;권병두
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.465-478
    • /
    • 2003
  • This paper presents two methods for automatic estimation of threshold values in unsupervised change detection of multi-temporal remote sensing images. The proposed methods consist of two analytical steps. The first step is to compute the parameters of a 3-component Gaussian mixture model from difference or ratio images. The second step is to determine a threshold value using Bayesian rule for minimum error. The first method which is an extended version of Bruzzone and Prieto' method (2000) is to apply an Expectation-Maximization algorithm for estimation of the parameters of the Gaussian mixture model. The second method is based on an iterative thresholding algorithm that successively employs thresholding and estimation of the model parameters. The effectiveness and applicability of the methods proposed here were illustrated by two experiments and one case study including the synthetic data sets and KOMPSAT-1 EOC images. The experiments demonstrate that the proposed methods can effectively estimate the model parameters and the threshold value determined shows the minimum overall error.

A Study on the Distribution of Atmospheric Concentrations of Sulfur Compounds by GC/FPD (GC/FPD에 의한 대기 중 황화합물 농도분포에 관한 연구)

  • Yang, Sung Bong;Yu, Mee Seon;Hwang, Hee Chan
    • Analytical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.240-248
    • /
    • 2003
  • Sulfur compounds which are well-known odor-active compounds in industrial area have very low detection threshold values. Trace amounts of volatile sulfur compounds in enviroment air around several odor sources were concentrated in liquid argon bath and determined by gas chromatograph with flame photometric detector (FPD) which exhibits very good selectivity and sensitivity. 25% ${\beta}$,${\beta}$-Oxydipropionitrile on 60/80 Chromosorb W was used as adsorbent for the preconcentration of sulfur compounds in air sample and also as packing material for a packed glass column. Concentration volume of air sample was different from place to place in the range of 0.1~3.0L. Atmospheric concentrations of sulfur compounds in air of residential districts and boundaries of business establishments, and also those in the exhausted gases of emission points such as a sewage disposal plant in industrial area were measured.

A Unified Analytical Surface Potential Model for SOI MOSFETs (SOI MOSFET의 모든 동작영역을 통합한 해석적 표면전위 모델)

  • 유윤섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.2
    • /
    • pp.9-15
    • /
    • 2004
  • We present a new unified analytical front surface potential model, which can accurately describe the transitions between the partially-depleted (PD) and the fully-depleted (FD) regimes with an analytical expression for the critical voltage V$_{c}$ delineating the PD and the FD region. It is valid in all regions of operation (from the sub -threshold to the strong inversion) and has the shorter calculation time than the iterative procedure approach. A charge sheet model based on the above explicit surface potential formulation is used to derive a single formula for the drain current valid in all regions of operation. Most of the secondary effects can be easily included in the charge sheet model and the model accurately reproduces various numerical and experimental results. No discontinuity in the derivative of the surface potential is found even though three types of smoothing functions are used. More importantly, the newly introduced parameters used in the smoothing functions do not strongly depend on the process parameter.

Inherent Damage Zone Model for fatigue Strength Evaluation of Cracks and Notches (영역피해모델에 의한 균열 및 노치의 피로강도평가)

  • Kim Won-Beom;Paik Jeom-Kee;Fujimoto Yukio
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.494-503
    • /
    • 2006
  • Inherent damage zone model is presented to explain the fatigue properties near the fatigue limit and the crack growth threshold consistently Inherent damage zone model assumes that the stress at a point which is located at a small distance, $r_0$, an inherent length of the material that represents the size of effective damage zone, from the crack initiation position governs the fatigue characteristics regardless of the geometric configuration of the specimen; smooth specimen, notched specimen or cracked specimens with short and long crack length. A special feature of the paper is using the exact stress distributions of notched and cracked specimens at the strength evaluations. Analytical elastic solutions by Neuber and Westergaard are employed for this purpose Relationship between fatigue limit of smooth specimen and threshold stress of cracked specimen, occurrence condition of non-propagating crack at the root of elliptic notch and circular hole and relationship between stress concentration factor and fatigue notch factor are discussed quantitatively based on the proposed model.

GreenIoT Architecture for Internet of Things Applications

  • Ma, Yi-Wei;Chen, Jiann-Liang;Lee, Yung-Sheng;Chang, Hsin-Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.444-461
    • /
    • 2016
  • A power-saving mechanism for smartphone devices is developed by analyzing the features of data that are received from Internet of Things (IoT) sensors devices to optimize the data processing policies. In the proposed GreenIoT architecture for power-saving in IoT, the power saving and feedback mechanism are implemented in the IoT middleware. When the GreenIoT application in the power-saving IoT architecture is launched, IoT devices collect the sensor data and send them to the middleware. After the scanning module in the IoT middleware has received the data, the data are analyzed by a feature evaluation module and a threshold analysis module. Based on the analytical results, the policy decision module processes the data in the device or in the cloud computing environment. The feedback mechanism then records the power consumed and, based on the history of these records, dynamically adjusts the threshold value to increase accuracy. Two smart living applications, a biomedical application and a smart building application, are proposed. Comparisons of data processed in the cloud computing environment show that the power-saving mechanism with IoT architecture reduces the power consumed by these applications by 24% and 9.2%.

Robust spectrum sensing under noise uncertainty for spectrum sharing

  • Kim, Chang-Joo;Jin, Eun Sook;Cheon, Kyung-yul;Kim, Seon-Hwan
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.176-183
    • /
    • 2019
  • Spectrum sensing plays an important role in spectrum sharing. Energy detection is generally used because it does not require a priori knowledge of primary user (PU) signals; however, it is sensitive to noise uncertainty. An order statistics (OS) detector provides inherent protection against nonhomogeneous background signals. However, no analysis has been conducted yet to apply OS detection to spectrum sensing in a wireless channel to solve noise uncertainty. In this paper, we propose a robust spectrum sensing scheme based on generalized order statistics (GOS) and analyze the exact false alarm and detection probabilities under noise uncertainty. From the equation of the exact false alarm probability, the threshold value is calculated to maintain a constant false alarm rate. The detection probability is obtained from the calculated threshold under noise uncertainty. As a fusion rule for cooperative spectrum sensing, we adopt an OR rule, that is, a 1-out-of-N rule, and we call the proposed scheme GOS-OR. The analytical results show that the GOS-OR scheme can achieve optimum performance and maintain the desired false alarm rates if the coefficients of the GOS-OR detector can be correctly selected.

Optically Controlled Silicon MESFET Modeling Considering Diffusion Process

  • Chattopadhyay, S.N.;Motoyama, N.;Rudra, A.;Sharma, A.;Sriram, S.;Overton, C.B.;Pandey, P.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.196-208
    • /
    • 2007
  • An analytical model is proposed for an optically controlled Metal Semiconductor Field Effect Transistor (MESFET), known as Optical Field Effect Transistor (OPFET) considering the diffusion fabrication process. The electrical parameters such as threshold voltage, drain-source current, gate capacitances and switching response have been determined for the dark and various illuminated conditions. The Photovoltaic effect due to photogenerated carriers under illumination is shown to modulate the channel cross-section, which in turn significantly changes the threshold voltage, drainsource current, the gate capacitances and the device switching speed. The threshold voltage $V_T$ is reduced under optical illumination condition, which leads the device to change the device property from enhancement mode to depletion mode depending on photon impurity flux density. The resulting I-V characteristics show that the drain-source current IDS for different gate-source voltage $V_{gs}$ is significantly increased with optical illumination for photon flux densities of ${\Phi}=10^{15}\;and\;10^{17}/cm^2s$ compared to the dark condition. Further more, the drain-source current as a function of drain-source voltage $V_{DS}$ is evaluated to find the I-V characteristics for various pinch-off voltages $V_P$ for optimization of impurity flux density $Q_{Diff}$ by diffusion process. The resulting I-V characteristics also show that the diffusion process introduces less process-induced damage compared to ion implantation, which suffers from current reduction due to a large number of defects introduced by the ion implantation process. Further the results show significant increase in gate-source capacitance $C_{gs}$ and gate-drain capacitance $C_{gd}$ for optical illuminations, where the photo-induced voltage has a significant role on gate capacitances. The switching time ${\tau}$ of the OPFET device is computed for dark and illumination conditions. The switching time ${\tau}$ is greatly reduced by optical illumination and is also a function of device active layer thickness and corresponding impurity flux density $Q_{Diff}$. Thus it is shown that the diffusion process shows great potential for improvement of optoelectronic devices in quantum efficiency and other performance areas.

The Study of Edge Extract Methods Using Improved Detect Mask (개선된 검출 마스크를 이용한 에지추출 방법들에 관한 연구)

  • Shin, Choong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.191-199
    • /
    • 2009
  • In this paper, the improved edge extract methods is proposed in order to extract edge. For the correct and fast detect, the binary image using the threshold value is applied for a experiment. For the experimental analysis, we compare the existing edge methods with the improved methods. Hereby, the exist methods are the sobel, robert, and prewitt. and the improved methods use the existing methods which is applied mask variations. The merits of the improved mothods have a result of a little erosion, a apparent edge. Specially, we use the grey image of medical image for the experimental analysis and then apply threshold value for a result image. After that, we acquire a apparent edge. For a quantitative analysis of the each methods, the each images was applied a histogram. As a result, we prove the merit of the improved methods using a analytical graph of the medical images.

  • PDF

Relation of Short Channel Effect and Scaling Theory for Double Gate MOSFET in Subthreshold Region (문턱전압이하 영역에서 이중게이트 MOSFET의 스켈링 이론과 단채널효과의 관계)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1463-1469
    • /
    • 2012
  • This paper has presented the influence of scaling theory on short channel effects of double gate(DG) MOSFET in subthreshold region. In the case of conventional MOSFET, to preserve constantly output characteristics,current and switching frequency have been analyzed based on scaling theory. To analyze the results of application of scaling theory for short channel effects of DGMOSFET, the changes of threshold voltage, drain induced barrier height and subthreshold swing have been observed according to scaling factor. The analytical potential distribution of Poisson equation already verified has been used. As a result, it has been observed that threshold voltage among short channel effects is grealty changed according to scaling factor. The best scaling theory for DGMOSFET has been explained as using modified scaling theory, applying weighting factor reflected the influence of two gates when scaling theory has been applied for channel length.

Analysis of Volatile Organic Compounds by GC/MS with the Thermal Desorber and Characterization of the Major Components Attributing to Malodor -An Analytical Example of the Odor Emitted from the Compost of Food Waste- (흡착 열탈착 장치와 GC/MS를 이용한 휘발성 유기화합물의 분석과 악취원인 성분의 예측 - 음식물 퇴비화 과정에서 발생되는 악취분석의 예 -)

  • Yu, Mee-Seon;Yang, Sung-Bong;Ahn, Jeong-Soo
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.80-86
    • /
    • 2002
  • The simultaneous analysis of the odorous compounds designated by law in Korea and Japan was examined with the thermal desorber gas chromatography-mass spectrometry using one column. The approximate concentrations of trimethyl amine, acetaldehyde, methyl mercaptan and dimethyl sulfide were estimated. Styrene, dimethyl disulfide, propionaldehyde, n-butyl aldehyde, i-butyl aldehyde, n-valeraldehyde, i-valeraldehyde, ethyl acetate, toluene, xylene, methyl i-butyl ketone and i-butanol were detected at concentrations of the detection limits of their threshold values. As a typical example of simultaneous analysis of the odorous compounds, the volatile organic compounds emitted from compost procedure of food waste were concentrated and analyzed with thermal desorber/GC/MSD, and major malodorous compounds were estimated from the concentrations and threshold values of the detected components. From the result of analysis, 34 compounds were confirmed and among them, trimethyl amine, i-valeraldehyde, methyl mercaptan, methyl allyl sulfide, dimethyl sulfide, acetaldehyde, ethanol, n-butyaldehyde were expected to attribute to the odor in order of strength.