• Title/Summary/Keyword: analytical properties

Search Result 1,563, Processing Time 0.025 seconds

Band alignment and optical properties of $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ gate dielectrics thin films on p-Si (100)

  • Tahir, D.;Kim, K.R.;Son, L.S.;Choi, E.H.;Oh, S.K.;Kang, H.J.;Heo, S.;Chung, J.G.;Lee, J.C.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.381-381
    • /
    • 2010
  • $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ thin films as gate dielectrics have been proposed to overcome the problems of tunneling current and degradation mobility inachieving a thin equivalent oxide thickness. An extremely thin $SiO_2$ layer is used in order to separate the carrier in MOSFET channel from the dielectric field fluctuation caused by phonons in the dielectric which decreases the carrier mobility. The electronic and optical properties influenced the device performance to a great extent. $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ dielectric films on p-Si (100) were grown by atomic layer deposition method, for which the conduction band offsets, valence band offsets and band gapswere obtained by using X-ray photoelectron spectroscopy and reflection electron energy loss spectroscopy. The band gap, valence and conduction band offset values for $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ dielectric thin film, grown on Si substrate were about 5.34, 2.35 and 1.87 eV respectively. This band alignment was similar to that of $ZrO_2$. In addition, The dielectric function (k, $\omega$), index of refraction n and the extinction coefficient k for the $(ZrO_2)_{0.66}(HfO_2)_{0.34}$ thin films were obtained from a quantitative analysis of REELS data by comparison to detailed dielectric response model calculations using the QUEELS-$\varepsilon$(k, $\omega$)-REELS software package. These optical properties are similar with $ZrO_2$ dielectric thin films.

  • PDF

Mechanical Properties and Structural Analyses for the Corrugated 3 Layered Sandwich Panels (코로게이트 3층 샌드위치 패널 구조체 물성 및 구조해석)

  • Yun, Su-Jin;Heo, Yeup;Gil, Hyun-Young;Park, Dong-Chang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.75-89
    • /
    • 2019
  • In the present work, structural analyses for light weight corrugate 3 layered sandwich panels are carried out. The mechanical properties of the sandwich panels are obtained using the modified analytical closed form based on a corrugated panel deformation and the homogenization scheme of an uniaxial composite. Subsequently, the mechanical properties estimated by the two aforementioned methods were employed for the numerical analyses for the corrugated sandwich panels under the specifically loading conditions, and a comparison between two methods was also made.

Load-carrying capacities and failure modes of scaffold-shoring systems, Part II: An analytical model and its closed-form solution

  • Huang, Y.L.;Kao, Y.G.;Rosowsky, D.V.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.67-79
    • /
    • 2000
  • Critical loads and load-carrying capacities for steel scaffolds used as shoring systems were compared using computational and experimental methods in Part I of this paper. In that paper, a simple 2-D model was established for use in evaluating the structural behavior of scaffold-shoring systems. This 2-D model was derived using an incremental finite element analysis (FEA) of a typical complete scaffold-shoring system. Although the simplified model is only two-dimensional, it predicts the critical loads and failure modes of the complete system. The objective of this paper is to present a closed-form solution to the 2-D model. To simplify the analysis, a simpler model was first established to replace the 2-D model. Then, a closed-form solution for the critical loads and failure modes based on this simplified model were derived using a bifurcation (eigenvalue) approach to the elastic-buckling problem. In this closed-form equation, the critical loads are shown to be function of the number of stories, material properties, and section properties of the scaffolds. The critical loads and failure modes obtained from the analytical (closed-form) solution were compared with the results from the 2-D model. The comparisons show that the critical loads from the analytical solution (simplified model) closely match the results from the more complex model, and that the predicted failure modes are nearly identical.

An extended analytical solution for the mixture solidification problem (혼합물의 응고문제에 대한 확장된 해석해)

  • Jeong, Jae-Dong;Yu, Ho-Seon;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.184-192
    • /
    • 1998
  • This paper deals with an extended analytical solution for the mixture solidification problem, in which temperature is inherently coupled with the solute transport due to the presence of volume contraction induced flow. A new exact solution to the energy equation accounting for the convection effect in the melt is successfully derived, which allows the present analysis to cover a high initial superheating. Difference in properties between the solid and liquid phases is rigorously incorporated into the model equations in the solid fraction weighted form. Taking advantage of linearized correction factors, a systematic and easy-to-implement algorithm for determining the solidus and liquidus positions is introduced, which proves not only to converge stably but also to be very efficient. For a specific case, the present results show excellent agreements with the existing solution. The effect of convection in the melt becomes appreciable with increasing the initial superheating. It is revealed that variable properties in the mushy region significantly affect the solidification behaviors. The present study is also capable of resolving the interaction between microsegregation and macrosegregation.

Some properties of the Green's function of simplified elastodynamic problems

  • Sanchez-Sesma, Francisco J.;Rodriguez-Castellanos, Alejandro;Perez-Gavilan, Juan J.;Marengo-Mogollon, Humberto;Perez-Rocha, Luis E.;Luzon, Francisco
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.507-518
    • /
    • 2012
  • It is now widely accepted that the resulting displacement field within elastic, inhomogeneous, anisotropic solids subjected to equipartitioned, uniform illumination from uncorrelated sources, has intensities that follow diffusion-like equations. Typically, coda waves are invoked to illustrate this concept. These waves arrive later as a consequence of multiple scattering and appear at "the tail" (coda, in Latin) of seismograms and are usually considered an example of diffuse field. It has been demonstrated that the average correlations of motions within a diffuse field, in frequency domain, is proportional to the imaginary part of Green's function tensor. If only one station is available, the average autocorrelation is equal to the average squared amplitudes or the average power spectrum and this gives the Green's function at the source itself. Several works address this point from theoretical and experimental point of view. However, a complete and explicit analytical description is lacking. In this work we study analytically some properties of the Green's function, specifically the imaginary part of Green's function for 2D antiplane problems. This choice is guided by the fact that these scalar problems have a closed analytical solution (Kausel 2006). We assume the diffusiveness of the field and explore its analytical consequences.

Flexural/shear strength of RC beams with longitudinal FRP bars An analytical approach

  • Kosmidou, Parthena-Maria K.;Chalioris, Constantin E.;Karayannis, Chris G.
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.573-592
    • /
    • 2018
  • An analytical methodology for the calculation of the flexural and the shear capacity of concrete members with Fibre-Reinforced-Polymer (FRP) bars as tensional reinforcement is proposed. The flexural analysis is initially based on the design provisions of ACI 440.1R-15 which have properly been modified to develop general charts that simplify computations and provide hand calculations. The specially developed charts include non-dimensional variables and can easily be applied in sections with various geometrical properties, concrete grade and FRP properties. The proposed shear model combines three theoretical considerations to facilitate calculations. A unified flexural/shear approach is developed in flow chart which can be used to estimate the ultimate strength and the expected failure mode of a concrete beam reinforced with longitudinal FRP bars, with or without transverse reinforcement. The proposed methodology is verified using existing experimental data of 138 beams from the literature, and it predicts the load-bearing capacity and the failure mode with satisfactory accuracy.

Simplified beam-column joint model for reinforced concrete moment resisting frames

  • Kanak Parate;Onkar Kumbhar;Ratnesh Kumar
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.77-91
    • /
    • 2024
  • During strong seismic events, inelastic shear deformation occurs in beam-column joints. To capture inelastic shear deformation, an analytical model for beam-column joint in reinforced concrete (RC) frame structures has been proposed in this study. The proposed model has been developed using a rotational spring and rigid links. The stiffness properties of the rotational spring element have been assigned in terms of a moment rotation curve developed from the shear stress-strain backbone curve. The inelastic rotation behavior of joint has been categorized in three stages viz. cracking, yielding and ultimate. The joint shear stress and strain values at these stages have been estimated using analytical models and experimental database respectively. The stiffness properties of joint rotational spring have been modified by incorporating a geometry factor based on dimensions of adjoining beam and column members. The hysteretic response of the joint rotational spring has been defined by a pivot hysteresis model. The response of the proposed analytical model has been verified initially at the component level and later at the structural level with the two actually tested RC frame structures. The proposed joint model effectively emulates the inelastic behavior precisely with the experimental results at component as well as at structural levels.

A study on selenium quantification using ICP-MS with oxygen reactive gas in soil of Korea

  • Hyun-Young Kim;Young-Kyu Hong;Jin-Wook Kim;Sung-Chul Kim
    • Analytical Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.230-238
    • /
    • 2024
  • This study evaluates a method for quantifying selenium (Se) concentration in soil using inductively coupled plasma mass spectrometry (ICP-MS), with oxygen as a reaction gas. This approach addresses the challenge of detecting low levels of Se in complex soil matrices and aims to effectively minimize interference problems typically associated with argon plasma in traditional ICP-MS analyses. The analytical method utilizes conditions optimized for minimizing spectral interference and were validated by linearity, accuracy, precision, limit of detection (LOD), and limit of quantification (LOQ). The method demonstrated good linearity, high accuracy (90-97 %), and remarkable sensitivity, achieving detection and quantification limits of 0.15 ㎍/kg and 0.44 ㎍/kg, respectively. Developed analysis method for Se in soil was applied to field samples in the different regions of South Korea and Se concentration ranged from 0.11 to 0.52 mg/kg. Correlation analysis between Se concentration and soil properties showed that Se concentration was significantly correlated with cation exchange capacity (CEC) and available phosphorus among other soil properties.

An analytical solution of the annular plate on elastic foundation

  • Pavlou, D.G.;Vlachakis, N.V.;Pavlou, M.G.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.209-223
    • /
    • 2005
  • A new method for deriving analytical solution of the annular elastic plate on elastic foundation under axisymmetric loading is presented. The formulation is based on application of Hankel integral transforms and Bessel functions' properties in the corresponding boundary-value problem. A representative example is studied and the obtained solution is compared with published numerical results indicating excellent agreement.

Free vibration of primary-secondary structures with multiple connections (다중 지지된 주-부 구조물의 자유진동)

  • 민경원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.63-68
    • /
    • 1991
  • The frequency window method has been extended to include strong coupling and multiple connections between the primary structure and the secondary structures. The rational polynomial expansion of the eigenvalue problem and the analytical methods for its solution are novel and distinguish this work from other eigenvalue analysis methods. The key results are the identification of parameters which quantify the resonance and coupling characteristics; the derivation of analytical dosed-form expressions describing the fundamental modal properties of the frequency windows; and the development of an iterative procedure which yields accurate convergent results for strongly-coupled primary-secondary structures.

  • PDF