• Title/Summary/Keyword: an inverted pendulum system

Search Result 210, Processing Time 0.024 seconds

Design of Fuzzy Logic Control System for Segway Type Mobile Robots

  • Kwak, Sangfeel;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.126-131
    • /
    • 2015
  • Studies on the control of inverted pendulum type systems have been widely reported. This is because this type of system is a typical complex nonlinear system and may be a good model to verify the performance of a proposed control system. In this paper, we propose the design of two fuzzy logic control systems for the control of a Segway mobile robot which is an inverted pendulum type system. We first introduce a dynamic model of the Segway mobile robot and then analyze the system. We then propose the design of the fuzzy logic control system, which shows good performance for the control of any nonlinear system. In this paper, we here design two fuzzy logic control systems for the position and balance control of the Segway mobile robot. We demonstrate their usefulness through simulation examples. We also note the possibility of simplifying the design process and reducing the computational complexity. This possibility is the result of the skew symmetric property of the fuzzy rule tables of the system.

Real Time Pose Control for the Horizontal Maintenance and driving of Mobile Inverted Pendulum (모바일 역진자의 수평유지와 주행을 위한 실시간 자세 제어)

  • Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.157-163
    • /
    • 2011
  • In this paper, configuration control for the Horizontal Maintenance and driving of the mobile inverted pendulum robot has been studied using ARS(Attitude Refrence System). The inverted pendulum technique is getting attention and there have been many researches on the seg-way since the US. Using its 2 freedom, a mobile inverted pendulum robot can move in various modes and Our robot performs goal reaching ARS. Mobile inverted pendulum robot fall down to the forward or reverse direction to converge to the stable point. Kalman Filter is normally used for the algorithm and numerous research is progressing at the moment. To calculate the attitude in ARS using 2 axis gyro(roll, pitch) and 3 axis accelerometers (x, y, z). In this paper we present a two wheel robot system for an autonomous mobile robot. This paper realized the robot control method which is much simpler but able to get desired performance by using the IMU and PID control.

Networked Control System Design Accounting for Time-Delays with Application to Inverted Pendulum

  • Park, Byung-In;Yoo, Ho-Jun;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1470-1473
    • /
    • 2003
  • In this paper the networked control systems (NCS) problem is discussed where plants and controllers are distributed and interconnected by a common network. NCS is designed with LQ regulator and applied to an inverted pendulum accounting for the multiple time delays. We are to deals with a networked control system with a single controller, multiple sensors and multiple actuators. Since these parts are distributed, they are interconnected by communication networks. An NCS with LQ regulator is designed and applied to an inverted pendulum as a benchmark plant to check its performance under time delays induced by the network. Network induced delays are composed of two parts. One is the delay from controller to plant, and another is from plant to controller. They are assumed to be constant in this paper, and the plant and controller are discretized. To apply the LQ regulator the NCS model is transformed to a standard model with delayed states as state variable. And real network induced delay is measuring in TCP/IP network assuming that two delays are constant.

  • PDF

Implementation of Balancing Control System for Two Wheeled Inverted Pendulum Robot (이륜 역진자 로봇의 밸런싱 제어시스템 구현)

  • An, Tae-Hee;Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.432-439
    • /
    • 2012
  • In this paper, instead of the conventional PD controller for balancing control of two wheeled inverted pendulum robots, an improved PD controller using the neural network is proposed and implemented for performance verification. First, a two wheeled inverted pendulum robot system is constructed for experiment. Next proper gains of the conventional PD controller according to users' weights are obtained for balancing the robot by use of the trial and error method. The PD gains based on the trial and error method are generalized through the neural network. Experiment results show that the PD controller based on the neural network has better performance than the conventional PD controller.

Stabilized Control of Inverted Pendulum System by ANFIS

  • Lee, Joon-Tark;Lee, Oh-Keol;Shim, Young-Zin;Chung, Hyeng-Hwan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.691-695
    • /
    • 1998
  • Most of systems has nonlinearity . And also accurate modelings of these uncertain nonlinear systems are very difficult. In this paper, a fuzzy modeling technique for the stabilization control of an IP(inverted pendulum) system with nonlinearity was proposed. The fuzzy modeling was acquired on the basis of ANFIS(Adaptive Neuro Fuzzy Infernce System) which could learn using a series of input-output data pairs. Simulation results showed its superiority to the PID controller. We believe that its applicability can be extended to the other nonlinear systems.

  • PDF

A stabilization of an inverted pendulum by a nonlinear control law

  • Shioda, Michinori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1833-1838
    • /
    • 1991
  • This paper presents a stabilization technique for unstable systems. An inverted pendulum, which is a typical unstable mechanical system, is considered and stabilized by a nonlinear control. The stabilization problem in this system is related to that in postural control of human being. In this paper, the variable structure control (VSC) is applied to the stabilization problem. Robustness by the VSC and that by a conventional linear feedback controller are compared.

  • PDF

Desing of Genetic Algorithms Based Optimal Fuzzy Controller and Stabilization Control of the Inverted Pendulum System (유전알고리즘에 의한 최적 퍼지 제어기의 설계와 도립전자 시스템의 안정화 제어)

  • 박정훈;김태우;임영도;소명옥;이준탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.162-165
    • /
    • 1996
  • In this paper, we proposed an optimization method of the membership function and the numbers of fuzzy rule base for the stabilization controller of the inverted pendulum system by genetic algorithm(GAs). Conventional methods to these problems need to an expert knowledge or human experience. The proposed genetic algorithm method will tune automatically the input-output membership parameters and will optimize their rule-base.

  • PDF

Control of Inverted Pendulum using Robust Adaptive Fuzzy Controller (강인한 적응 퍼지 제어기를 이용한 도립 진자 제어)

  • Seo, Sam-Jun;Kim, Dong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2441-2443
    • /
    • 2003
  • This paper proposes an indirect adaptive fuzzy controller for general SISO nonlinear systems. No a priori information on bounding constants of uncertainties including reconstruction errors and optimal fuzzy parameters is needed. The control law and the update laws for fuzzy rule structure and estimates of fuzzy parameters and bounding constants are determined so that the Lyapunov stability of the whole closed loop system is guaranteed. The computer simulation results for an inverted pendulum system show the performance of the proposed robust adaptive fuzzy controller.

  • PDF

Digital Control of An Inverted Pendulum by Using Intelligent Digital Redesign (지능형 디지탈 재설계를 이용한 도립 진자의 디지탈 제어)

  • Chang, Wook;Joo, Young-Hoon;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.10
    • /
    • pp.457-463
    • /
    • 2001
  • This paper presents a simple and new digital redesign algorithm for fuzzy-model-based controllers. In the first stage, a continuous-time TS fuzzy model is constructed for a given continuous-time nonlinear system and a corresponding continuous-time fuzzy-model-based controller is established based on the existing controller synthesis algorithms. In the second stage, the continuous-time fuzzy-model-based controller is converted to equivalent discrete-time fuzzy-model-based controller, aiming at maintaining the property of the analogue controlled system, which are called intelligent digital redesign. Finally, the proposed method is applied to the digital control of inverted pendulum system to shows the effectiveness and the effectiveness and the feasibility of the method.

  • PDF

The Attitude Control of The Double Inverted Pendulum with Periodic Upper Disturbance (주기적인 상부 외란이 인가되는 2축 도립 진자의 자세 제어)

  • Nam, Row-Hyun;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2309-2311
    • /
    • 1998
  • The attitude control of a double inverted pendulum with a periodical disturbance at link top is dealt in this paper. The proposed system is consisted of the double inverted pendulum and a disturbance link. The lower link is hinged on the plate to free for rotation in the vertical plane. The upper link is connected to the lower link through a DC motor. The DC motor is used to control the posture of the pendulum by adjusting the position of the upper link. The periodical disturbance can be generated by the additional link attached at the end of link 2 through another DC motor, which is the modeling of a posture for a biped supporting with one leg. The motor for the joint simulates the knee joint(or hip joint) and the disturbance for the legs moving in air. The algorithm for controlling a proposed inverted pendulum is consisted of a state feedback control and a fuzzy logic controller. The fuzzy controller keeps the center of gravity of the biped within the specified range through the nonlinear feedback compensator. The state feedback control takes over the role to maintain a desired posture regardless the disturbance at the link top. In these case, the change of the angle and COG of an upper link is compensated with on-line. Simulations with a mathematical model are conducted to show the validity of the proposed controller.

  • PDF