• Title/Summary/Keyword: amplification factors

Search Result 165, Processing Time 0.024 seconds

Analysis of Site Amplification Characteristics of Several Seismic Stations Distributed in the Southern Korean Peninsula (국내 지진관측소 부지의 지반증폭특성 연구)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.486-494
    • /
    • 2006
  • The horizontal to vertical (H/V) ratio technique in spectral domain is a common useful technique to estimate empirical site transfer function. The technique, originally proposed by Nakamura, is proposed to analyse the surface waves in the micrortremor records. The purpose of this paper is to estimate spectral ratio using observed data at the seismic stations distributed within Southern Korean Peninsula from the Fukuoka earthquake including 11 aftershocks. The results show that most of the stations have fairly good amplification characteristics in low frequency band. However, some of the seismic stations show one (resonant frequency specific to the site) or several local peaks of amplification factors with narrow high frequency band. Even though the site amplification characteristics are important information, we should be careful to analyse the observed ground motions from the seismic stations which have several very high amplification peaks for the deconvolution of seismic source and attenuation parameters.

Verification of the Torsional Amplification Factor for the Seismic Design of Torsionally Imbalanced Buildings (비틀림 비정형 건물의 내진설계를 위한 우발편심 비틀림 증폭계수 검증)

  • Lee, Kwang-Ho;Jeong, Seoung-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.67-74
    • /
    • 2010
  • Because of the difference between the actual and computed eccentricity of buildings, symmetrical buildings will be affected by torsion. In provisions, accidental eccentricity is intended to cover the effect of several factors, such as unfavorable distributions of dead- and live-load masses and the rotational component of ground motion about a vertical axis. The torsional amplification factor is introduced to reduce the vulnerability of torsionally imbalanced buildings. The effect of the torsional amplification factor is observed for a symmetric rectangular building with various aspect ratios, where the seismic-force-resisting elements are positioned at a variable distance from the geometrical center in each direction. For verifying the torsional amplification factor in provisions, nonlinear reinforced concrete models with various eccentricities and aspect ratios are used in rock. The difference between the maximum displacements of the flexible edge obtained between using nonlinear static and time-history analysis is very small but the difference between the maximum torsional angles is large.

The Dynamic Basement Amplification Characteristics of a Dam Site using a Reference Site Method (기준관측소 방법을 이용한 댐체 기반암의 동적 지반증폭특성)

  • Wee, Soung-Hoon;Kim, Jun-Kyoung;Yoo, Seong-Hwa
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.161-171
    • /
    • 2017
  • Observed ground motions are composed of three factors such as, seismic source, attenuation, and site amplification effect. Among them, the site amplification characteristics should be considered significantly when estimating seismic source and attenuation characteristics with more confidence. The site effect is also necessary when estimating not only seismic hazard in seismic design engineering but also rock mechanical properties. This study uses the method of H/V spectral ratio of observed ground motion between target site and reference site called a reference site method. In addition to using the vertical Fourier spectrum of the reference site, we try out the horizontal Fourier spectrum as a new method in this study. We analyze H/V spectral ratio of six ground motions respectively, observed at four sites close to Yedang Reservoir. We then compare site amplification effects at each site using 3 kinds of seismic energies including S waves, Coda waves energy, and background noise. The results suggest that each site showed similar site amplification patterns in S waves and Coda waves energy. However, the site amplification of background noise shows much different characteristics from those of S waves and Coda wave energy, which suggests that the background noises at each site have their own developing mechanism. Each station shows its own characteristics of specific resonance frequency and site amplification properties in low, high and specific resonance frequency ranges. Comparison of the method used in this study to the others that used different methods can provide us with more information about the dynamic amplification of a site characteristics and site classification.

The Site Effect of the Broadband Seismic Stations in Korea (국내 광대역 지진 관측소의 부지효과)

  • Wee, Soung-Hoon;Kim, Sung-Kyun
    • Economic and Environmental Geology
    • /
    • v.41 no.2
    • /
    • pp.225-242
    • /
    • 2008
  • The site effect for 23 broadband seismic stations in the southern Korean Peninsula was estimated by using the spectral ratio of coda waves. In principle, the site effect means the pure amplification below the station excluding effects of seismic source and attenuation in the wave transmission. However, the site effect determined in this study is equivalent with the relative site amplification factor to the mean amplification for all stations. A total of 500 three-component seismograms from 35 earthquakes, of which magnitude ranged from 2.5 to 5.1 occurred from January, 2001 to January, 2007 was used to obtain the site amplification factor. The site amplification factors were estimated for the frequency bands centered at 0.2, 0.5, 1, 2, 5, 10, 15, and 20 Hz. It was found that the factors for two horizontal components of transverse and radial records were concordant with each other in the all frequency bands. However, the factor for the vertical component was found to be systematically lower than those for two horizontal components. The factors obtained in the low frequency band below 2 Hz ranged from 0.5 to 1.5 in all seismic stations except for KMA and KIGAM stations in Bagryeongdo (BRD1 and BRD2) of which factor showed high value above 1.5. Some stations such as SEO, SNU, HKU, NPR, and GKPI showed high value above 1.5 in the high frequency band from 5 to 20 Hz. Especially, the factors of GKP1 station represented extremely high value ranging from 1.8 to 7.8. Also, the factors for stations of KWJ, SND, and ULJ showed low value below 0.5. The spatial distribution for the relative amplification factor represented a tendency of being approximately lower in north-eastern area than south-western area in the southern Korean Peninsula.

Hybridal Method for the Prediction of Wave Instabilities Inherent in High Energy-Density Combustors (1): Modeling of Nonlinear Cavity Acoustics and its Evolution

  • Lee, Gil-Yong;Yoon, Woong-Sup
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.26-32
    • /
    • 2006
  • This paper targets a direct and quantitative prediction of characteristics of unstable waves in a combustion chamber, which employs the governing equations derived in terms of amplification factors of flow variables. A freshly formulated nonlinear acoustic equation is obtained and the analysis of unsteady waves in a rocket engine is attempted. In the present formalism, perturbation method decomposes the variables into time-averaged part that can be obtained easily and accurately and time-varying part which is assumed to be harmonic. Excluding the use of conventional spatially sinusoidal eigenfunctions, a direct numerical solution of wave equation replaces the initial spatial distribution of standing waves and forms the nonlinear space-averaged terms. Amplification factor is also calculated independently by the time rate of changes of fluctuating variables, and is no longer an explicit function for compulsory representation. Employing only the numerical computation, major assumptions inevitably inherent, and in erroneous manner, in up to date analytical methods could be avoided. With two definitions of amplification factor, 1-D stable wave and 3-D unstable wave are examined, and clearly demonstrated the potentiality of a suggested theoretical-numerical method of combustion instability.

Experimental analysis of an asymmetric reinforced concrete bridge under vehicular loads

  • Thambiratnam, D.P.;Brameld, G.H.;Memory, T.J.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.1
    • /
    • pp.17-35
    • /
    • 2000
  • Dynamic response of a three span continuous bridge has been determined by full scale experiments on the bridge. In the experiments, a heavy vehicle was driven across the bridge at different speeds and along different lanes of travel and the strains were recorded at different locations. The bridge was made of reinforced concrete and was asymmetric in plan and in elevation. Frequencies and modes of vibration excited by the vehicle were determined. The dependence of the dynamic amplification on bridge location and vehicle speed was investigated and dynamic amplifications up to 1.5 were recorded, which was higher than values predicted by bridge design codes. It was evident that when this asymmetric bridge was loaded by an asymmetric forcing function, higher modes, which are lateral and/or torsional in nature, were excited. Dynamic modulus of elasticity and the support stiffness influenced the natural frequencies of the bridge, which in turn influenced the dynamic amplifications. Larger than anticipated dynamic amplification factors and the excitation of lateral and/or torsional modes should be of interest and concern to bridge engineers.

Evaluation of Seismic Design Parameters for Nonstructural Components Based on Coupled Structure-Nonstructural 2-DOF System Analysis (구조물-비구조요소 2자유도 결합시스템 해석을 통한 비구조요소 내진설계변수 평가)

  • Bae, Chang Jun;Lee, Cheol-Ho;Jun, Su-Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.105-116
    • /
    • 2022
  • Seismic demand on nonstructural components (NSCs) is highly dependent on the coupled behavior of a combined supporting structure-NSC system. Because of the inherent complexities of the problem, many of the affecting factors are inevitably neglected or simplified based on engineering judgments in current seismic design codes. However, a systematic analysis of the key affecting factors should establish reasonable seismic design provisions for NSCs. In this study, an idealized 2-DOF model simulating the coupled structure-NSC system was constructed to analyze the parameters that affect the response of NSCs comprehensively. The analyses were conducted to evaluate the effects of structure-NSC mass ratio, structure, and NSC nonlinearities on the peak component acceleration. Also, the appropriateness of component ductility factor (Rp) given by current codes was discussed based on the required ductility capacity of NSCs. It was observed that the responses of NSCs on the coupled system were significantly affected by the mass ratio, resulting in lower accelerations than the floor spectrum-based response, which neglected the interaction effects. Also, the component amplification factor (ap) in current provisions tended to underestimate the dynamic amplification of NSCs with a mass ratio of less than 15%. The nonlinearity of NSCs decreased the component responses. In some cases, the code-specified Rp caused nonlinear deformation far beyond the ductility capacity of NSCs, and a practically unacceptable level of ductility was required for short-period NSCs to achieve the assigned amount of response reduction.

Functional Shock Responses of the Pear According to the Combination of the Packaging Cushioning Materials (포장완충재의 구성에 따른 배의 단일파형 충격반응)

  • Kim, Ghi-Seok;Park, Jong-Min;Kim, Man-Soo
    • Journal of Biosystems Engineering
    • /
    • v.35 no.5
    • /
    • pp.323-329
    • /
    • 2010
  • Physical damages on fruits may be caused by shock and vibration inputs that transmitted from the transporting vehicle through the packaging and cushioning materials to the fruit. In this study, both half sine shock test and trapezoidal shock test were performed by MIL-STD-810F specification in order to investigate and represent the shock response properties such as peak acceleration and shock amplification factors of the pear according to packaging and cushioning materials for optimal packaging design during transportation. Shock excitation data that had been measured on the vehicle operating on the real road were used. Shock response properties measured by half sine shock test were smaller than those measured by trapezoidal shock test. Results represent that corrugation shapes and thickness can significantly affect the cushioning performance than the paper configurations of cushioning pad and showed that fruits may be damaged seriously while transported on the unpaved road without the properly cushioned packaging practices.

Dynamic numerical analysis of single-support modular bridge expansion joints

  • Yuan, Xinzhe;Li, Ruiqi;Wang, Jian'guo;Yuan, Wancheng
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • Severe fatigue and noise problems of modular bridge expansion joints (MBEJs) are often induced by vehicle loads. However, the dynamic characteristics of single-support MBEJs have yet to be further investigated. To better understand the vibration mechanism of single-support MBEJs under vehicle loads, a 3D finite element model of single-support MBEJ with five center beams is built. Successive vehicle loads are given out and the vertical dynamic responses of each center beams are analyzed under the successive loads. Dynamic amplification factors (DAFs) are also calculated along with increasing vehicle velocities from 20 km/h to 120 km/h with an interval 20 km/h. The research reveals the vibration mechanism of the single-support MBEJs considering coupled center beam resonance, which shows that dynamic responses of a given center beam will be influenced by the neighboring center beams due to their rebound after the vehicle wheels depart. Maximal DAF 1.5 appears at 120 km/h on the second center beam. The research results can be utilized for reference in the design, operation and maintenance of single-support MBEJs.

The Water Wave Scattering by the Marine Structure of Arbitrary Shape (임의 형태의 해양구조물에 의한 해수파의 산란)

  • 신승호;이중우
    • Journal of the Korean Institute of Navigation
    • /
    • v.17 no.1
    • /
    • pp.61-78
    • /
    • 1993
  • Large offshore structure are to be considered for oil storage facilities , marine terminals, power plants, offshore airports, industrial complexes and recreational facilities. Some of them have already been constructed. Some of the envisioned structures will be of the artificial-island type, in which the bulk of structures may act as significant barriers to normal waves and the prediction of the wave intensity will be of importance for design of structure. The present study deals wave scattering problem combining reflection and diffraction of waves due to the shape of the impermeable rigid upright structure, subject to the excitation of a plane simple harmonic wave coming from infinity. In this study, a finite difference technique for the numerical solution is applied to the boundary integral equation obtained for wave potential. The numerical solution is verified with the analytic solution. The model is applied to various structures, such as the detached breakwater (3L${\times}$0.1L), bird-type breakwater(318L${\times}$0.17L), cylinder-type and crescent -type structure (2.89L${\times}$0.6L, 0.8L${\times}$0.26L).The result are presented in wave height amplification factors and wave height diagram. Also, the amplification factors across the structure or 1 or 2 wavelengths away from the structure are compared with each given case. From the numerical simulation for the various boundary types of structure, we could figure out the transformation pattern of waves and predict the waves and predict the wave intensity in the vicinity of large artificial structures.

  • PDF