The Site Effect of the Broadband Seismic Stations in Korea

국내 광대역 지진 관측소의 부지효과

  • 위성훈 (한국지질자원연구원 지진연구센터) ;
  • 김성균 (전남대학교 지구환경과학부)
  • Published : 2008.04.28

Abstract

The site effect for 23 broadband seismic stations in the southern Korean Peninsula was estimated by using the spectral ratio of coda waves. In principle, the site effect means the pure amplification below the station excluding effects of seismic source and attenuation in the wave transmission. However, the site effect determined in this study is equivalent with the relative site amplification factor to the mean amplification for all stations. A total of 500 three-component seismograms from 35 earthquakes, of which magnitude ranged from 2.5 to 5.1 occurred from January, 2001 to January, 2007 was used to obtain the site amplification factor. The site amplification factors were estimated for the frequency bands centered at 0.2, 0.5, 1, 2, 5, 10, 15, and 20 Hz. It was found that the factors for two horizontal components of transverse and radial records were concordant with each other in the all frequency bands. However, the factor for the vertical component was found to be systematically lower than those for two horizontal components. The factors obtained in the low frequency band below 2 Hz ranged from 0.5 to 1.5 in all seismic stations except for KMA and KIGAM stations in Bagryeongdo (BRD1 and BRD2) of which factor showed high value above 1.5. Some stations such as SEO, SNU, HKU, NPR, and GKPI showed high value above 1.5 in the high frequency band from 5 to 20 Hz. Especially, the factors of GKP1 station represented extremely high value ranging from 1.8 to 7.8. Also, the factors for stations of KWJ, SND, and ULJ showed low value below 0.5. The spatial distribution for the relative amplification factor represented a tendency of being approximately lower in north-eastern area than south-western area in the southern Korean Peninsula.

이 연구에서는 coda파 스펙트럼 비를 이용하여 한반도 남부의 광대역 지진관측소 23개소에 대한 부지효과를 추정하였다. 원리적으로 부지효과는 지진원과 전달과정중의 감쇠효과를 제외한 관측소 하부에서의 순수한 증폭효과만을 의미한다. 그러나 이 연구에서 구한 부지효과는 모든 관측소의 평균값에 대한 상대적인 부지증폭률과 같다. 2001년 1월부터 2007년 1월 사이에 발생한 규모 2.5부터 5.1까지의 지진 35개로부터 기록된 500개의 3성분 파형이 부지증폭효과를 얻기 위해 사용되었다. 부지증폭률은 중심주파수를 0.2, 0.5, 1,2, 5, 10, 15, 및 20 Hz로 하는 주파수대역에 대해서 계산하였다. 횡단성분과 방사성분의 수평 2성분에 대한 부지증폭률은 모든 주파수 대역에서 서로 일치하나, 수직성분의 증폭률은 수평성분에 비하여 일관되게 낮게 나타났다. 또한 증폭률은 저주파 보다는 고주파에서 일반적으로 증폭의 정도가 큰 경향을 보였다. 부지증폭률은 2 Hz 이하의 저주파에서 1.5 이상의 높은 값을 갖는 기상청과 한국지질자원연구원의 백령도 관측소(BRD1과 BRD2)를 제외한 나머지 관측소에서 0.5와 1.5사이의 값을 갖는다. SEO, SNU, HKU, NPR 및 GKP1 관측소들은 5${\sim}$20Hz범위의 고주파 대역에서 1.5 이상의 높은 값을 보였으며, 특히 GKP1 관측소는 1.8${\sim}$7.8 범위의 높은 증폭값이 나타났다. 또한 KWJ, SND 및 ULJ 관측소는 0.5이하의 낮은 값을 나타내었다. 부지증폭률의 공간적 분포는 한반도 남부에서 대체로 북동부가 남서부에 비해 증폭의 정도가 낮은 경향을 보여 준다.

Keywords

References

  1. Aki, K. (1969) Analysis of the seismic coda of local earthquakes as scattered waves. Journal of Geophysical Research, v.74, p.615-631 https://doi.org/10.1029/JB074i002p00615
  2. Aki, K. and Chouet, B. (1975) Origin of coda-waves : source, attenuation, and scattering effects. Journal of Geophysical Research, v.80, p.3322-334 https://doi.org/10.1029/JB080i023p03322
  3. Bonilla, L.F., Steidl, J.H., Lindley, G.T., Tumarkin, A.G. and Archuleta, R.J. (1997) Site amplification in the San Fernando Valley, California: Variability of site-effect estimation using the S-wave, Coda, and H/V methods. Bulletin of the Seismological Society of America, v.87, p.710-730
  4. Brune, J. (1970) Tectonic stress and the spectra of seismic shear waves from earthquake. Journal of Geophysical Research, v.75, p.4997-5009 https://doi.org/10.1029/JB075i026p04997
  5. Castro, R.R., Anderson J.G. and Singh S.K. (1990) Site response, attenuation and sourec spectra of S waves along the Guerrero, Mexico, subduction zone. Bulletin of the Seismological Society of America, v.80, p.1481-1503
  6. Celebi, M., Prince, J., Dietel, J., Onate M. and Chavez, G. (1987) The culprit in Mexico City - Amplification of motions. Earthquake Spectra, v.3, p.315-328 https://doi.org/10.1193/1.1585431
  7. Chin, B. H. and Aki, K. (1991) Simultaneous determination of source, path, and recording site effects on strong ground motion during the Lama Prieta earthquake: a preliminary result on pervasive nonlinear site effect. Bulletin of the Seismological Society of America, v.81, p.1859-1884
  8. Fehler, M. and Sato, H. (2003) Coda. Pure and Applied Geophysics, v.160, p.541-554 https://doi.org/10.1007/PL00012549
  9. Field, E.H. (1996) Spectral amplification in a sedimentfilled valley exhibiting clear basin-edge induced waves. Bulletin of the Seismological Society of America, v.86, p.991-1005
  10. Field, E.H. and Jacob, K.H. (1995) A comparison and test of various site response estimation techniques, including three that are non reference-site dependent. Bulletin of the Seismological Society of America, v.85, p.1127-1143
  11. Field, E.H., Jacob, K.H. and Hough, S.E, (1992) Earthquake site response estimation: a weak-motion case study. Bulletin of the Seismological Society of America, v.82, p.2283-2307
  12. Gao, S., Liu, Davis, P.M. and Knopoff, L. (1996) Localized amplification of seismic waves and correlation with damage due to the Northridge earthquake. Bulletin of the Seismological Society of America, v.85, p. S209-S230
  13. Hartzell, S.H. (1992) Site response estimation from earthquake data. Bulletin of the Seismological Society of America, v.82, p.2308-2327
  14. Hartzell, S.H., Leeds, A., Frankel, A. and Michael, J. (1996) Site response for urban Los Angeles using aftershocks of the Northridge earthquake. Bulletin of the Seismological Society of America, v.86, p. S168- S192
  15. Horike, M., Zhao, B. and Kawase, H. (2001) Comparison of site response characteristics inferred from microtremors and earthquake motions. Bulletin of the Seismological Society of America, v.91, p.1526-1536 https://doi.org/10.1785/0120000065
  16. Kato, K., Aki, K. and Takemura, M. (1995) Site amplification from coda waves: Validation and application to S-wave site response. Bulletin of the Seismological Society of America, v.85, p.467-477
  17. Kim, D.-I. and Baag, C.-E. (2002) Site amplification factors in southern Korea determined from coda wave. Proceedings of EESK Conference 2002-Spring, v.6, p.51-58 (in Korean)
  18. Kosuga, M. (1992) Dependence of coda on frequency and lapse time in the Western Nagano Region, Central Japan. Journal of Physical Earth. v.40, p.421-445 https://doi.org/10.4294/jpe1952.40.421
  19. Koyanagi, S., Mayeda, K. and Aki, K. (1992) Frequencydependent site amplification factors using the S-wave coda for the island of Hawaii. Bulletin of the Seismological Society of America, v.82, p.1151-1185
  20. Lachet, D., Hatzfeld, C., Bard, P.-Y., Theodulis, N., Papaioannou, C. and Avvaidis, A. (1996) Site effects and microzonation in the city of Thessaloniki (Greece), comparison of different approaches. Bulletin of the Seismological Society of America, v.86, p.1692-1703
  21. Langston, C. A. (1979) Structure under Mount Rainier, Washington, inferred from teleseismic body waves. Journal of Geophysical Research, v.84, p.4749-4762 https://doi.org/10.1029/JB084iB09p04749
  22. Margheriti, L., Wennerberg, L. and Boatwright, J. (1994) A comparison of coda and S-wave spectral ratio estimates of site response in the southern San Francisco Bay area. Bulletin of the Seismological Society of America, v.84, p.1815-1830
  23. Mayeda, K., Koyanagi, S. and Aki, K. (1991) Site amplifications from S-wave coda in the Long Valley caldera region, California. Bulletin of the Seismological Society of America, v.81, p.2194-2213
  24. Nakamura, Y. (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of the Railway Technical Research Institute, v.30, p.25-355
  25. Oohara, S. (1974) Modern earthquake engineering. Morikita Press, Tokyo, p.206 (in Japanese)
  26. Phillips, W.S. and Aki, K. (1986) Site amplification of coda waves from local earthquakes in Central California. Bulletin of the Seismological Society of America, v.76, p.627-648
  27. Sato, H. (1977) Energy propagation including scattering effects, single isotropic scattering approximation. Journal of Physical Earth, v.25, p.27-41 https://doi.org/10.4294/jpe1952.25.27
  28. Steidl, J. H. (1993) Variation of site response at the UCSB dense array of portable accelerometers. Earthquake Spectra, v.9, p.289-302 https://doi.org/10.1193/1.1585716
  29. Su, F., Aki, K., Teng, T.-L., Zeng, Y., Koyanagi, S. and Mayeda, K. (1992) The relation between site amplification factor and surficial geology in Central California. Bulletin of the Seismological Society of America, v.82, p.580-602
  30. Su, F. and Aki, K. (1995) Site amplification factors in central and southern California determined from coda waves. Bulletin of the Seismological Society of America, v.85, p.452-466
  31. Su, F., Anderson, J.G., Brune, J.N. and Zeng, Y. (1996) A comparison of direct S-wave and coda wave site amplification determined from aftershocks of Little Skull Mountain earthquake. Bulletin of the Seismological Society of America, v.86, p.1006-1018
  32. Taira, T.A. and Yomogida, K. (2003) Characteristics of small-scale heterobeneities in the Hidaka, Japan, region estimated by coda envelope level. Bulletin of the Seismological Society of America, v.93, p.1531- 1541 https://doi.org/10.1785/0120020073
  33. Takemura, M., Motosaka, M. and Tamanaka, H. (1995) Strong motion seismology in Japan. Journal of Physical Earth, v.43, p.211-257 https://doi.org/10.4294/jpe1952.43.211
  34. The Korea Geophysical Society (2002) A study on the optimization plan for the seismic monitoring system. Korea Meterological Administration, p.55 (in Korean)
  35. Tsujiura, M. (1978) Spectral analysis of the coda waves from local earthquakes. Bulletin of the Earthquake Research Institution, University of Tokyo, v.53, p.1- 48
  36. Wee, S.H. (2008) The site effect of the seismic stations in Korea. Master Thesis of Chonnam National University, p.66 (in Korean)
  37. Yun, K.-H. (2007) Two-dimensional Q tomography inversion for the southern part of the Korean Peninsula. Doctoral Thesis of Seoul National University, p.181 (in Korean)