• Title/Summary/Keyword: amperometric

Search Result 136, Processing Time 0.027 seconds

Electrochemical properties of the mugwort-embedded biosensor for the determination of hydrogen peroxide (쑥을 이용한 과산화수소 정량 바이오센서의 전기화학적 성질)

  • Lee, Beom-Gyu;Park, Sung-Woo;Yoon, Kil-Joong
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.58-64
    • /
    • 2006
  • A mugwort-tissue-based modified carbon paste electrode was constructed for the amperometric detection of hydrogen peroxide and its electrochemical properties are described. Especially the amperometric signal was very stable and bigger than any other enzyme electrode studied in this lab. The effect of tissue composition on the response was linear within the wide range of experiment and the linearity of Lineweaver-Burk plot showed that the sensing process of the biosensor is by enzymatic catalysis. And pH dependent current profile connoted that two isozymes are active in this system.

Fabrication and Characterization of an optical oxygen gas sensor formed on the planar optical waveguide prepared by ion exchang method (이온 교환법으로 제조된 평판형 광도파로의 산소광센서의 제작 및 특성평가)

  • 정채환;김재성;김원효;이병택;문종하;김진혁
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.178-179
    • /
    • 2002
  • 최근에 화학, 임상병리, 환경 감시 등의 분야에서 산소센서의 수요가 점차 증가하고 있다. 이러한 산소 센서 중에 가장 많이 쓰이는 방식은 산화물 전극을 사용하는 amperometric 방법이지만 이 방법들은 장기간에 걸쳐 볼 때 산화물 전극의 오염, 외부 자기장의 간섭 등의 제점 때문에 산소를 측정하는데 많은 어려움이 있다. (1) 따라서 최근에는 빛과 유기염료를 통하여 산소의 농도가 증가할수록 세기가 quenching이 되는 원리를 이용한 산소센서의 연구가 이루어졌다. (중략)

  • PDF

Mechanically Immobilized Copper Hexacyanoferrate Modified Electrode for Electrocatalysis Amperometric Determination of Glutathione

  • D. Davi Shankaran;S. Sriman Narayanan
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.816-820
    • /
    • 2001
  • A new copper hexacyanoferrate modified electrode was constructed by mechanical immobilization. The modified electrode was characterised by cyclic voltammetric experiments. Electrocatalytic oxidation of glutathione was effective at the modified electrode at a significantly reduced overpotential and at broader pH range. The modified electrode shows a stable and linear response in the concentration range of 9 ${\times}$10-5 to 9.9 ${\times}$10-4M with a correlation coefficient of 0.9995. The modified electrode exhibits excellent stability, reproducibility and rapid response and can be used in flow injection analysis for the determination of glutathione.

A new nano-composite carbon ink for disposable dopamine biosensors (나노컴포지트 카본 잉크가 전착된 일회용 도파민 바이오센서)

  • Dinakaran, T.;Chang, S.-C.
    • Analytical Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • A new nano-composite carbon ink for the development of disposable dopamine (DA) biosensors based on screen-printed carbon electrodes (SPCEs) is introduced. The method developed uses SPCEs coupled with a tyrosinase modified nano-composite carbon ink. The ink was prepared by an “in-house” procedure with reduced graphene oxide (rGO), Pt nanoparticles (PtNP), and carbon materials such as carbon black and graphite. The rGO-PtNP carbon composite ink was used to print the working electrodes of the SPCEs and the reference counter electrodes were printed by using a commercial Ag/AgCl ink. After the construction of nano-composite SPCEs, tyrosinase was immobilized onto the working electrodes by using a biocompatible matrix, chitosan. The composite of nano-materials was characterized by X-ray photoelectron spectroscopy (XPS) and the performance characteristics of the sensors were evaluated by using voltammetric and amperometric techniques. The cyclic voltammetry results indicated that the sensors prepared with the rGO-PtNP-carbon composite ink revealed a significant improvement in electro-catalytic activity to DA compared with the results obtained from bare or only PtNP embedded carbon inks. Optimum experimental parameters such as pH and operating potential were evaluated and calibration curves for dopamine were constructed with the results obtained from a series of amperometric detections at −0.1 V vs. Ag/AgCl. The limit of detection was found to be 14 nM in a linear range of 10 nM to 100 µM of DA, and the sensor’s sensitivity was calculated to be 0.4 µAµM−1cm−2.

An Improvement of Recovery Characteristics of ISFET Glucose Sensor by Employing Oxygen Electrolysis (산소분자의 전기분해법을 도입한 ISFET 포도당센서의 회복특성 개선)

  • Park, Keun-Yong;Choi, Sang-Bok;Lee, Young-Chul;Lee, Min-Ho;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.203-207
    • /
    • 2000
  • The sensitivity of ISFET glucose sensor is improved by employing amperometric actuation method. However, this method takes long time to recover the primary output voltage after measurement because of slow migration of the hydrogen ion between internal and external sensing membranes. Consequently, such a recovery-time delaying problem is one of obstacles to a practical use. In this paper, a new method is proposed to control the concentration of hydrogen ion in internal membrane, which applies a reduction potential to the working electrode for supplying hydroxide ion. Experimental results show that the recovery-time was reduced within 2 minute against decades minute of conventional method.

  • PDF

Development of New Analytical Method of Vitamins Using Supercritical Fluid (초임계 유체를 이용한 비타민류의 새로운 분석법 개발)

  • Pyo, Dongjin;Park, Dongjin;Kim, Hohyun;Lee, Hakju;Lee, Taejoon
    • Analytical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 1997
  • Supercritical Fluid Chromatography(SFC) has become a technique for solving problems that are difficult to be monitored by other chromatographic methods. However, the most widely used fluid, is no more polar than hexane. Polar samples which are difficult to be analyzed with pure supercritical $CO_2$ because of their high polarity can be separated by adding polar modifiers to supercritical $CO_2$. In this paper, a new method for monitoring the mobile phase composition in modified supercritical fluid chromatography was developed. The amount of water dissolved in supercritical $CO_2$ was measured by amperometric microsensor which is made of thin film of perfluorosulfonate ionomer(PFSI). The amount of water dissolved in supercritical $CO_2$ stayed constant for a much longer time than with a saturator column. With this new mixing device, we could get good resolutions for vitamins which are difficult to separate with pure $CO_2$.

  • PDF

Development of New Separation Technique, Modifier Composition Programming in Supercritical Fluid Chromatography (초임계 유체 크로마토그래피에서 새로운 분리방식인 변형제 조성 프로그래밍법 개발)

  • Kim, Hohyun;Pyo, Dongjin
    • Analytical Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.350-356
    • /
    • 1997
  • Supercritical Fluid Chromatography(SFC) has been developed as an analytical technique for the compounds that is difficult to analyze by conventional chromatography. Since supercritical fluid $CO_2$ is difficult to elute solutes with high polarity, modified supercritical $CO_2$, was used as a mobile phase. In conventional method, silica column which is saturated with modifier was used. However, with this method, we can not control the quantity of modifier. In this paper, we developed a new method which can control quantity of modifier mixed in supercritical fluid $CO_2$. The quantity of $H_2O$ mixed was measured with amperometric microsensor which was made by perflurosulfonate ionomer(PFSI) film. we have also obtained a good supercritical fluid chromatogram of PAH mixture by use of a modifier composition programming method.

  • PDF

Amperometric Biosensor for Hydrogen Peroxide Determination Based on Black Goat Liver-Tissue and Ferrocene Mediation (흑염소 간-조직과 Ferrocene 매개체를 사용한 과산화수소정량 전류법 바이오센서)

  • Kwon, Hyo-Shik;Park, In-Keun;Kim, Yang-Sug
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.5
    • /
    • pp.491-498
    • /
    • 2004
  • The response characteristics of the bioelectrode developed by the co-immobilization of black goat liver tissue and ferrocene in a carbon paste matrix for the amperometric determination of hydrogen peroxide were evaluated. In the range of electrode potential examined ($-0.3{\sim}+0.0\;V$ vs. Ag/AgCl), the response time was relatively short (t95%=12 s) and it responded in the wide range of pH. The detection limit was 2.25${\times)10^{-6}M$ and a relative standard deviation of the measurements which were repeated 15 times using 1.0${\times}10^{-2 }$M hydrogen peroxide was 1.87%. The bioelectrode sensitivity decreased to 50% of the original value in 19 days of continuous use.