• Title/Summary/Keyword: amorphous silicon (a-Si)

Search Result 489, Processing Time 0.032 seconds

Microstructural and Mechanical Characterization of Nanocomposite Ti-Al-Si-N Films Prepared by a Hybrid Deposition System (하이브리드 증착 시스템에 의해 합성된 나노복합체 Ti-Al-Si-N 박막의 미세구조와 기계적 특성)

  • 박인욱;최성룡;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.109-115
    • /
    • 2003
  • Quaternary Ti-Al-Si-N films were deposited on WC-Co substrates by a hybrid deposition system of arc ion plating (AIP) method for Ti-Al source and DC magnetron sputtering technique for Si incorporation. The synthesized Ti-Al-Si-N films were revealed to be composites of solid-solution (Ti, Al, Si)N crystallites and amorphous Si3N4 by instrumental analyses. The Si addition in Ti-Al-N films affected the refinement and uniform distribution of crystallites by percolation phenomenon of amorphous silicon nitride, similarly to Si effect in TiN film. As the Si content increased up to about 9 at.%, the hardness of Ti-Al-N film steeply increased from 30 GPa to about 50 GPa. The highest microhardness value (~50 GPa) was obtained from the Ti-Al-Si-N film haying the Si content of 9 at.%, the microstructure of which was characterized by a nanocomposite of nc-(Ti,Al,Si) N/a$-Si_3$$N_4$.

Immunity Improvement of Mo Silicidized a-Si FEA to Vacuum Environments

  • Shim, Byung-Chang;Lee, Jong-Duk;Park, Byung-Gook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.141-142
    • /
    • 2000
  • In order to improve electron field emission and its stability, tip surface of amorphous silicon field emitters have been coated with molybdenum layer with a thickness of 25 nm through the gate opening and annealed rapidly in inert ambient. Compared with amorphous silicon field emitters, Mo silicidized amorphous silicon field emitters exhibited lower turn on voltage about 9 V, 3.8 times higher maximum current, 3.1 times lower fluctuation range and less change of the emission current depending on the vacuum level.

  • PDF

A High-Resolution Transmission Electron Microscopy Study of the Grain Growth of the Crystalline Silicon in Amorphous Silicon Thin Films (비정질 실리콘 박막에서 결정상 실리콘의 입자성장에 관한 고분해능 투과전자현미경에 의한 연구)

  • 김진혁;이정용;남기수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.7
    • /
    • pp.85-94
    • /
    • 1994
  • A high-resolution transmission electron microscopy study of the solid phase crystallization of the amorphous silicon thin films, deposited on SiOS12T at 52$0^{\circ}C$ by low pressure chemical vapor deposition and annealed at 55$0^{\circ}C$ in a dry N$_{2}$ ambient was carried out so that the arrangement of atoms in the crystalline silicon and at the amorphous/crystalline interface of the growing grains could be understood on an atomic level. Results show that circular crystalline silicon nuclei have formed and then the grains grow to an elliptical or dendritic shape. In the interior of all the grains many twins whose{111} coherent boundaries are parallel to the long axes of the grains are observed. From this result, it is concluded that the twins enhance the preferential grain growth in the <112> direction along {111} twin planes. In addition to the twins. many defect such as intrinsic stacking faults, extrinsic stacking faults, and Shockley partial dislocations, which can be formed by the errors in the stacking sequence or by the dissociation of the perfect dislocation are found in the silicon grain. But neither frank partial dislocations which can be formed by the condensation of excess silicon atoms or vacancies and can form stacking fault nor perfect dislocations which can be formed by the plastic deformation are observed. So it is concluded that most defects in the silicon grain are formed by the errors in the stacking sequence during the crystallization process of the amorphous silicon thin films.

  • PDF

Notching Effect in Etching of the Undoped $\alpha$-Si by using High Density $Cl_2/HBr$ Plasma (고밀도 $Cl_2/HBr$ 플라즈마에 의한 비도핑 $\alpha$-Si 식각시 나칭 현상)

  • Shin, Seong-Wook;Kim, Nam-Hoon;Yu, Seok-Bin;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.10-13
    • /
    • 2000
  • The notching effect in etching of un doped amorphous silicon gate had different characteristics and mechanism comparing with reported ones. The undoped amorphous silicon was etched by using HBr gas plasma, First, in the region of small line width, the potential was increased as a result of ions in the exposed surface of oxide, and the incident ions between the small line width were deflected more wide range, therefore the depth of notching was shallow and wide, Second, in the region of large line width of gate, electrons were charged on the top of photoresist and the side of gate, a part of ions deflected, The deflected ions were locally charged positive on the side of gate, and then the potential difference was produced, therefore, ions stored up more at independent line than at dense line, and nothing became deeper by Br ion bombardment.

  • PDF

Novel AC bias compensation scheme in hydrogenated amorphous silicon TFT for AMOLED Displays

  • Parikh, Kunjal;Chung, Kyu-Ha;Choi, Beom-Rak;Goh, Joon-Chul;Huh, Jong-Moo;Song, Young-Rok;Kim, Nam-Deog;Choi, Joon-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1701-1703
    • /
    • 2006
  • Here we describe a novel driving scheme in the form of negative AC bias stress (NAC) to compensate shift in the threshold voltage for hydrogenated amorphous silicon (${\alpha}$-Si:H) thin film transistor (TFT) for AMOLED applications. This scheme preserves the threshold voltage shift of ${\alpha}$-Si:H TFT for infinitely long duration of time(>30,000 hours) and thereby overall performance, without using any additional TFTs for compensation. We briefly describe about the possible driving schemes in order to implement for real time AMOLED applications. We attribute most of the results based on concept of plugging holes and electrons across the interface of the gate insulator in a controlled manner.

  • PDF

Hydrogenated Amorphous Silicon Thin Films as Passivation Layers Deposited by Microwave Remote-PECVD for Heterojunction Solar Cells

  • Jeon, Min-Sung;Kamisako, Koichi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.75-79
    • /
    • 2009
  • An intrinsic silicon thin film passivation layer is deposited by the microwave remote-plasma enhanced chemical vapor deposition at temperature of $175^{\circ}C$ and various gas ratios for solar cell applications. The good quality amorphous silicon films were formed at silane $(SiH_4)$ gas flow rates above 15 seem. The highest effective carrier lifetime was obtained at the $SiH_4$, flow rate of 20 seem and the value was about 3 times higher compared with the bulk lifetime of 5.6 ${\mu}s$ at a fixed injection level of ${\Delta}n\;=\;5{\times}10^{14}\;cm^{-3}$. An annealing treatment was performed and the carrier life times were increased approximately 5 times compared with the bulk lifetime. The optimal annealing temperature and time were obtained at 250 $^{\circ}C$ and 60 sec respectively. This indicates that the combination of the deposition of an amorphous thin film at a low temperature and the annealing treatment contributes to the excellent surface and bulk passivation.

Amorphous Silicon Carbon Nitride Films Grown by the Pulsed Laser Deposition of a SiC-$Si_3N_4$ Mixed Target

  • Park, Nae-Man;Kim, Sang-Hyeob;Sung, Gun-Yong
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.257-261
    • /
    • 2004
  • We grew amorphous SiCN films by pulsed laser deposition using mixed targets. The targets were fabricated by compacting a mixture of SiC and $SiC-{Si_3}{N_4}$ powders. We controlled the film stoichiometry by varying the mixing ratio of the target and the target-to-substrate distance. The mixing ratio of the target had a dominant effect on the film composition. We consider the structures of the SiCN films deposited using 30~70 wt.% SiC in the target to be an intermediate phase of SiC and $SiN_x$. This provides the possibility of growing homogeneous SiCN films with a mixed target at a moderate target-to-substrate distance.

  • PDF

Use of a Rapid Thermal Process Technique to study on the crystallization of amorphous Si films fabricated by PECVD (PECVD 방법으로 제조된 비정질 Si 박막의 RTP를 이용한 결정화 연구)

  • Sim, C.H.;Kim, H.N.;Kim, S.J.;Kim, J.W.;Kwon, J.Y.;Lee, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2052-2054
    • /
    • 2005
  • TFT-LCD requires to use poly silicon for High resolution and High integration. Thin film make of Poly silicon on the excimer laser-induced crystallization of PECVD(plasma-enhanced chemical vapor deposition)-grown amorphous silicon. In the thin film hydrogen affects to a device performance from bad elements like eruption, void and etc. So dehydrogenation prior to laser exposure was necessary. In this study, use RTP(Rapid Thermal Process) at various temperature from $670^{\circ}C$ to $750^{\circ}C$ and fabricate poly-silicon. it propose optimized RTP window to compare grain size to use poly silicon's SEM pictures and crystallization to analyze Raman curved lines.

  • PDF

Plasma Synthesis of Silicon Nanoparticles for Next Generation Photovoltaics

  • Kim, Ka-Hyun;Kim, Dong Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.135.1-135.1
    • /
    • 2014
  • Silicon nanoparticles can be synthesized in a standard radio-frequency glow discharge system at low temperature (${\sim}200^{\circ}C$). Plasma synthesis of silicon nanoparticles, initially a side effect of powder formation, has become over the years an exciting field of research which has opened the way to new opportunities in the field of materials deposition and their application to optoelectronic devices. Hydrogenated polymorphous silicon (pm-Si:H) has a peculiar microstructure, namely a small volume fraction of plasma synthesized silicon nanoparticles embedded in an amorphous matrix, which originates from the unique deposition mechanism. Detailed discussion on plasma synthesis of silicon nanoparticles, growth mechanism and photovoltaic application of pm-Si:H will be presented.

  • PDF

Effects of Amorphous Si3N4 Phase on the Mechanical Properties of Ti-Al-Si-N Nanocomposite Films Prepared by a Hybrid Deposition System (하이브리드 증착 시스템에 의해 합성된 나노복합체 Ti-Al-Si-N 박막 내 존재하는 Si3N4 비정질상이 기계적 특성에 미치는 영향)

  • An, Eun-Sol;Jang, Jae-Ho;Park, In-Uk;Jeong, U-Chang;Kim, Gwang-Ho;Park, Yong-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.304-304
    • /
    • 2014
  • Quaternary Ti-Al-Si-N films were deposited on WC-Co substrates by a hybrid deposition system of arc ion plating (AIP) method for Ti-Al source and DC magnetron sputtering technique for Si incorporation. The synthesized Ti-Al-Si-N films were revealed to be composites of solid-solution (Ti,Al)N crystallites and amorphous $Si_3N_4$ by instrumental analyses. The Si addition in Ti-Al-N films affected the refinement and uniform distribution of crystallites by percolation phenomenon of amorphous silicon nitride, similarly to Si effect in TiN film. As the Si content increased up to about 9 at.%, the hardness of Ti-Al-N film steeply increased from 30 GPa to about 50 GPa. The highest microhardness value (~50 GPa) was obtained from the Ti-Al-Si-N film having the Si content of 9 at.%, the microstructure of which was characterized by a nanocomposite of $nc-(Ti,Al)N/a-Si_3N_4$.

  • PDF