• Title/Summary/Keyword: amorphous magnetic film

Search Result 99, Processing Time 0.029 seconds

Process effects on morphology, electrical and optical properties of a-InGaZnO thin films by Magnetic Field Shielded Sputtering

  • Lee, Dong-Hyeok;Kim, Gyeong-Deok;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.217-217
    • /
    • 2016
  • The amorphous InGaZnO (a-IGZO) is widely accepted as a promising channel material for thin-film transistor (TFT) applications owing to their outstanding electrical properties [1, 2]. However, a-IGZO TFTs have still suffered from their bias instability with illumination [1-4]. Up to now, many researchers have studied the sub-gap density of states (DOS) as the root cause of instability. It is well known that defect states can influence on the performances and stabilities of a-IGZO TFTs. The defects states should be closely related with the deposition condition, including sputtering power, and pressure. Nevertheless, it has not been reported how these defects are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOIs) can be generated by electron attachment in oxygen atom near target surface and then accelerated up to few hundreds eV by a self-bias; at this time, the high energy bombardment of NOIs induce defects in oxide thin films. Recently, we have reported that the properties of IGZO thin films are strongly related with effects of NOIs which are generated during the sputtering process [5]. From our previous results, the electrical characteristics and the chemical bonding states of a-IGZO thin films were depended with the bombardment energy of NOIs. And also, we suggest that the deep sub-gap states in a-IGZO as well as thin film properties would be influenced by the bombardment of high energetic NOIs during the sputtering process.In this study, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process to prevent the NOIs bombardment effects and present how much to be improved the properties of a-IGZO thin film by this new deposition method. We deposited a-IGZO thin films by MFSS on SiO2/p-Si and glass substrate at various process conditions, after which we investigated the morphology, optical and electrical properties of the a-IGZO thin films.

  • PDF

Influence of Working Pressure on The Magnetic Properties of Tb(Fe0.55Co0.45)1.5 Thin Films

  • Tu, Le Tuan;Duc, Nguyen Huu;Jeong, Jong-Ryul;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.160-162
    • /
    • 2008
  • In this work the magnetic anisotropies of magnetostriction material $Tb(Fe_{0.55}Co_{0.45})_{1.5}$ (named a-TerfecoHan) films were investigated with respect to working pressures in the range 1-7 mTorr. The results obtained show that perpendicular magnetic anisotropy (PMA) can be obtained at a working pressure above 5.1 mTorr. XRD was utilized to clarify the origin of the PMA observed in $Tb(Fe_{0.55}Co_{0.45})_{1.5}$ films, and revealed that all samples were amorphous. Therefore, we propose that the PMA effect is explained by stress produced in film due to internal relaxation process and magnetic anisotropy enhancements caused by magnetoelastic interactions.

Magnetic and Structural Properties of CoFeZr Alloy Films and Magnetoresistive Properties of Spin Valves Incorporating Amorphous CoFeZr Layer (CoFeZr 합금박막의 미세구조, 자기적 특성 및 비정질 CoFeZr 합금박막을 사용한 스핀밸브의 자기저항 특성에 관한 연구)

  • Ahn, Whang-Gi;Park, Dae-Won;Kim, Ki-Su;Lee, Seong-Rae
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.227-231
    • /
    • 2008
  • Magnetic and structural properties of CoFeZr alloy films as a function of Zr concentration and magnetoresistive properties of spin valves incorporated with amorphous CoFeZr alloy films have been studied. Magnetization and coercivity of CoFeZr alloy films decreased as the Zr content increased. A single amorphous CoFeZr phase was formed when the Zr content is about above 18 at%. Magnetoresistance ratio and exchange coupling field of spin valves with amorphous CoFeZr were reduced slightly as compared with spin valves with CoFe because the resistance of amophous CoFeZr is higher than that of crystalline CoFe. However, the ${\Delta}{\rho}$ of spin valves with amorphous CoFeZr was improved due to reduction of current shunting.

Effect of Heat Treatment on The Magnetic Properties of FeSiB Thin Film (열처리가 FeSiB 연자성 박막의 자기특성에 미치는 영향)

  • Hong, Jong-Wook;Jang, Tae-Suk;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.880-882
    • /
    • 2002
  • We have prepared magnetic thin films of FeSiB by sputtering and examined microstructure and magnetic properties of the annealed films in order to investigate the feasibility of the films to microsensor application. Effects of vacuum annealing on the magnetic properties of $Fe_{84}$$Si_{6}$$B_{10}$ films have been examined as a function of temperature. The heating rate and the holding time were 10 K/min and 1 hour, respectively. Vacuum condition was held during cooling to prevent oxidation of the films. The coercivity did not show any noticeable change (~1500 A/m), although the grain size of the crystalline phase in the annealed films increased gradually up to about 16 nm until 673 K. However, both the grain size and the coercivity increased steeply when the annealing temperature increased over 723 K. Since the saturation magnetization is closely related to the phase evolution, the variation of the saturation magnetization of the annealed films was similar to that of the ribbon materials; the thin films were transformed from amorphous to crystalline with $\alpha$-(Fe,Si) phase by increasing annealing temperature.

Analysis of Microwave Permeability and Damping Constant in Amorphous CoFeHfO Thin Film (비정질 CoFeHfO 박막 재료의 마이크로파 투자율 및 감쇠상수 분석)

  • Kim, Dong-Young;Yoon, Seok-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.4
    • /
    • pp.147-151
    • /
    • 2009
  • The saturation magnetization and uniaxial anisotropy constant were obtained from magnetization and torque curves measurement in high resistive CoFeHfO thin film. The measured results were used for the analysis of the microwave complex permeability based on Landau-Lifshitz-Gilbert (LLG) theory. The high resistive CoFeHfO thin films showed very low damping constants of ${\alpha}$ = 0.014. The results are interpreted in terms of various magnetic phase with very low damping constant, which were existing inside the CoFeHfO thin film, through the linewidth analysis of the ferromagnetic resonance signal with magnetic field.

Thickness Dependence of Amorphous CoSiB/Pd Multilayer with Perpendicular Magnetic Anisotropy (비정질 강자성체 CoSiB/Pd 다층박막의 두께에 따른 수직자기이방성 변화)

  • Yim, H.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.4
    • /
    • pp.122-125
    • /
    • 2013
  • Perpendicular magnetic anisotropy (PMA) is the phenomenon of magnetic thin film which is preferentially magnetized in a direction perpendicular to the film's plane. Amorphous multilayer with PMA has been studied as the good candidate to realization of high density STT-MRAM (Spin Transfer Torque-Magnetic Random Access Memory). The current issue of high density STT-MRAM is a decrease in the switching current of the device and an application of amorphous materials which are most suitable devices. The amorphous ferromagnetic material has low saturated magnetization, low coercivity and high thermal stability. In this study, we presented amorphous ferromagnetic multilayer that consists of an amorphous alloy CoSiB and a nonmagnetic material Pd. We investigated the change of PMA of the $[CoSiB\;t_{CoSiB}/Pd\;1.3nm]_5$ multilayer ($t_{CoSiB}$ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 nm, and $t_{Pd}$ = 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 nm) and $[CoSiB\;0.3nm/Pd\;1.3nm]_n$ multilayer (n = 3, 5, 7, 9, 11, 13). This multilayer is measured by VSM (Vibrating Sample Magnetometer) and analyzed magnetic properties like a coercivity ($H_c$) and a magnetization ($M_s$). The coercivity in the $[CoSiB\;t_{CoSiB}\;nm/Pd\;1.3nm]_5$ multi-layers increased with increasing $t_{CoSiB}$ to reach a maximum at $t_{CoSiB}$ = 0.3 nm and then decreased for $t_{CoSiB}$ > 0.3 nm. The lowest saturated magnetization of $0.26emu/cm^3$ was obtained in the $[CoSiB\;0.3nm/Pd\;1.3nm]_3$ multilayer whereas the highest coercivity of 0.26 kOe was obtained in the $[CoSiB\;0.3nm/Pd\;1.3nm]_5$ mutilayer. Additional Pd layers did not contribute to the perpendicular magnetic anisotropy. The single domain structure evolved in to a striped multi-domain structure as the bilayer repetition number n was increased above 7 after which (n > 7) the hysteresis loops had a bow-tie shapes.

Role of ${\alpha}-Al_2O_3$ buffer layer in $Ba-ferrite/SiO$ magnetic thin films (Ba-페라이트/$SiO_2$ 자성박막에서 ${\alpha}-Al_2O_3$ buffer 층의 역할)

  • Cho, Tae-Sik;Jeong, Ji-Wook;Kwon, Ho-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.267-270
    • /
    • 2003
  • We have studied the interfacial diffusion phenomena and the role of ${\alpha}-Al_2O_3$ buffer layer as a diffusion barrier in the $Ba-ferrite/SiO_2$ magnetic thin films for high-density recording media. In the interface of amorphous Ba-ferrite ($1900-{\AA}-thick)/SiO_2$ thin film during annealing, the interfacial diffusion started to occur at ${\sim}700^{\circ}C$. As the annealing temperature increased up to $800^{\circ}C$, the interfacial diffusion abruptly proceeded resulting in the high interface roughness and the deterioration of the magnetic properties. In order to control the interfacial diffusion at the high temperature, we introduced ${\alpha}-Al_2O_3$ buffer layer ($110-{\AA}-thick$) in the interface of $Ba-ferrite/SiO_2$ thin film. During the annealing of $Ba-ferrite/{\alpha}-Al_2O_3/SiO_2$ thin film even at ${\sim}800^{\circ}C$, the interface was very smooth. The smooth interface of the film was also clearly shown by the cross-sectional FESEM. The magnetic properties, such as saturation magnetization 3nd intrinsic coercivity, were also enhanced, due to the inhibition of interfacial diffusion by the ${\alpha}-Al_2O_3$ buffer layer. Our study suggests that the ${\alpha}-Al_2O_3$ buffer layer act as a useful interfacial diffusion barrier in the $Ba-ferrite/SiO_2$ thin films.

  • PDF

Effects of B Addition and Heat Treatment on the Magnetic and Magnetostrictive Properties of Amorphous $SmEe_2$ thin Films (비정질 $SmFe_2 $합금의 자기적 및 자기변형 특성에 미치는 B 첨가와 열처리 영향)

  • Choi, K.G.;Jang, Ho;Han, S.H.;Kim, H.J.;Lim, S.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.5
    • /
    • pp.237-245
    • /
    • 2000
  • Effects of B addition and heat treatment on the magnetic and magnetostrictive properties of amorphous SmFe$_2$ thin films are investigated. A significant improvement in the magnetostrictive properties at low magnetic fields is observed with the addition of B. This improvement, however, is achieved at a heavy cost of intrinsic properties such as saturation magnetostriction. For example, at a magnetic field of 30 Oe, magnetostriction of a thin film with a B content of 9.9 at.% is increased from 190 to 333 ppm, but saturation magnetostriction is decreased by more than 50 %. This result is in accord with the deterioration (reduction) of saturation magnetization and the improvement (reduction) of coercive force at this B content. The magnetostrictive properties are also improved by annealing and optimum annealing temperature is found to be in the range 300-400 $^{\circ}C$. The main reason for the improvement is mainly considered to be due to the reduction of coercive force caused by stress relief, not due to the ultrafine SmFe$_2$ precipitates which were originally expected to form by annealing.

  • PDF

Study on Heterogeneous Structures and High-Frequency Magnetic Properties Amorphous CoZrNb Thin Films (비정질 CoZrNb 박막의 불균일 구조와 고주파 자기특성에 관한 연구)

  • 정인섭;허재헌
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.31-36
    • /
    • 1991
  • Structural and compositional heterogeneities of sputter deposited, amorphous $Co_{87}Zr_{4}NB_{9}$ thin films were investigated using TEM and EDS with windowless detector. The films deposited with substrate bias and annealed in rotating magnetc field showed two amorphous phases of Co-rich region and (ZrNb)oxide-rich region, and revealed 'ultra-soft' magnetic properties. Revesible bias-responses and overdamped frequency responses, along with small Hc, Hk and Mr/Ms ratio, give the possibility of ultra-soft magnetic behavior fo CoZrNb thin films. We proposed the vortex type magnetization distribution in remanent state which was correlated with the thin film heterogeneity. Then, the ultra-soft characteristics of the compositionally heterogeneous films were explained by the spin vortices that minimized the total magnetostatic and exchange coupling energies.

  • PDF

Magnetic Properties of Multilayered and Mixed $Pr_{0.65}$Ca_{0.35}MnO_3/La_{0.7}Sr_{0.3}MnO_3$ Films

  • V. G. Prokhorov;Lee, Y. P.;V. S. Flis;Park, J. S.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.67-69
    • /
    • 2003
  • The magnetic properties of single- and poly-crystalline $La_{0.7}Sr_{0.3}MnO_3/Pr_{0.65}Ca_{0.35}MnO_3$ multilayered (ML) films, and composite (CP) $(La_{0.7}Sr_{0.3})_{0.5}(Pr_{0.65}Ca_{0.35}_{0.5}MnO_3$ films, prepared by laser ablation, have been investigated in a wide temperature range. It was shown that the transformation from an incoherent to a coherent interface in the ML films leads to an enhancement of the ferromagnetic coupling between layers and to a single-phase magnetic transition. The amorphous CP films demonstrate a paramagnetic behavior of the magnetization with a sharp peak at $T_{G}\approx$45 K, which was interpreted as the formation of Griffiths phase. A short-term annealing at $750^{\circ}C$ induced the complete crystallization of film, and a recovery of the ferromagnetic and the metal-insulator transitions.