• Title/Summary/Keyword: ammonium nitrate process

Search Result 67, Processing Time 0.02 seconds

Synthesis of Nanocrystalline Ceria Powders for SOFC Electrolyte (SOFC 전해질 제조를 위한 나노결정 세리아 분말의 합성)

  • Kim, Jin-Soo;Kwon, Byeong-Wan;Park, Jun-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.656-659
    • /
    • 2005
  • Nanocrystalline ceria powders were prepared by hydrothermal treatment of cerium(IV) ammonium nitrate solution without a precipitating agent. A systematic investigation of the effect of hydrothermal temperature and react ion time on the physical properties of the product powders was carried out. When the hydrothermal temperature was increased, the product ceria powders exhibited larger crystallite size with higher yield. Increasing reaction time produced more crystalline ceria powders attributed to further hydrothermal reactions and structural rearrangement. The physical properties of ceria powders can be control led by adjusting the hydrothermal conditions.

  • PDF

PREPARATION OF CERIUM DOPED TITANIA NANO POWDER FOR PHOTOCATALYST

  • Musyoki, Euphracia Ndinda;Kim, Kyung-Nam
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.257-257
    • /
    • 2012
  • Cerium doped anatase titania powders were prepared by sol-gel process, with ammonium (IV) nitrate and Titanium (IV) butoxide as the raw materials. The characteristics of anatase $TiO_2$ and cerium doped $TiO_2$ were investigated by XRD, DTA, FE-SEM and UV/Vis spectroscopy. Research results indicated that XRD data characteristic diffraction peaks of anatase phase and also showed that cerium phase was not observed. Moreover XRD and DTA results imply that the addition of cerium to titania modifies the mechanism of formation of the titania phases.

  • PDF

Changes of Physicochemical Parameters During the Aerobic Composting Process of Swine Manure (돈부의 호기성 퇴비화 단계별 물리.화학적 성상 변화)

  • 김태일;정광화;최기춘;류병희;곽정훈;전병수;박치호;김형호;한정대
    • Journal of Animal Environmental Science
    • /
    • v.3 no.1
    • /
    • pp.13-18
    • /
    • 1997
  • This study was conducted to investigate the physicochemical changes during the aerobic composting of swine manure mixed with bulking agent, sawdust(v/v, 1:1), in a full-scale composting plant using rectangular escalator-aginated bed composting system. Physical and chemical properties were analyzed on the samples which were collected at 5, 15, and 25 day of composting, curing and final step. The results of this study were summarized as follows; 1. Moisture and K2O content, and pH of final step were higher than those of 5th day of composting (p<0.05). 2. Ammonium nitrogen, total organic corbon and organic matter content, and electrical conductivity(EC) were significantly decreased (p<0.05) but nitrate nitrogen, ash and P2O5 content increased(p<0.05) throughout the aerobic composting process. 3. Total organic carbon per total nitrogen(C/N) and total organic matter per total nitrogen(OM/N) ratio were significantly decreased throughout the aerobic composting process(p<0.05). 4. Physical and chemical properties of swine manure were varied by aerobic fermentation using rectangular escalor-aginated bed composting system.

A Study On Synthesis of Nanostructured WC/Co composite Powders by Mechanochemical process (기계화학적방법에 의한 나노구조 WC/Co 복합 분말의 제조에 관한 연구)

  • 권대환;안인섭;하국현;김병기;김유영
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.167-173
    • /
    • 2002
  • A new approach to produce nanostructured WC/Co composite powders by a mechanochemical process was made to improve the mechanical properties of advanced hardmetals. Homogeneous spherical W-Co salt powders were made by spray drying of aqueous solution from ammonium metatungstate($(NH_4)_6(H_2W_{12}O_{40})\cdo4H_2O$,AMT) and cobalt nitrate hexahydrate (Co(NO$_3$)$_2$.6$H_2O$). spray dried W-Co salt powders were calcined for 1 hr at $700^{\circ}C$ in atmosphere of air. The oxide powder was mixed with carbon black by ball milling and this mixture was heated with various temperatures and times in $H_2$. The $WO_3/CoWO_4$ composite oxide powders were obtained by calcinations at $700^{\circ}C$. The primary particle size of W/Co composite oxide powders by SEM was 100 nm. The reduction/carburization time decreased with increasing temperatures and carbon additions. The average size of WC particle carburized at $800^{\circ}C$ by TEM was smaller than 50 nm.

Preparation and Characterization of Cerium Doped Titanium Dioxide Nano Powder for Photocatalyst

  • Ndinda, Euphracia;Park, Hyun;Kim, Kyung Nam
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.33-36
    • /
    • 2014
  • This study was aimed at synthesizing and characterizing cerium-doped titania. Cerium-doped anatase titania powders were prepared by sol-gel process, with ammonium (IV) nitrate and titanium (IV) butoxide as the raw materials. The characteristics of pure $TiO_2$ and cerium-doped $TiO_2$ were investigated by XRD, TG/DTA, FE-SEM, and UV-vis spectroscopy. The results of this study show that anatase type of $TiO_2$ was obtained in as-prepared and calcined $TiO_2$ and Ce-$TiO_2$ powder. A DTA curve was also observed as the crystallization temperature decreased with increasing cerium contents. We found that the crystallite size of the obtained anatase particles decreased from 55 nm to 25 nm and the particle size decreased with increasing cerium contents. Moreover, UV-vis spectra showed that anatase titania powders with various cerium contents effectively extend the light absorption properties to the visible region.

Synthesis and luminescence characteristics of nano-sized YAG : Ce phosphors by homogeneous precipitation method (Homogeneous precipitation method를 통한 나노 YAG : Ce 형광체 합성과 광학 특성)

  • Lee, Chul Woo;Kwon, Seok Bin;Ji, Eun Kyung;Song, Young Hyun;Jeong, Byung Woo;Kim, Eun Young;Jung, Mong Kwon;Yoon, Dae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.1
    • /
    • pp.18-21
    • /
    • 2017
  • In this study, spherical monodispersed cerium-doped yttrium aluminum garnet (YAG : $Ce^{3+}$) phosphor particles were synthesized via homogeneous precipitation method using the mixed solution of yttrium nitrate, cerium nitrate, aluminum nitrate, ammonium aluminum sulfate, and urea as a precipitant. During the process of precursors of monodispersed YAG : $Ce^{3+}$, aluminum ions which form spherical aluminum compounds precipitated first and yttrium compounds precipitated onto the surface of the existing spherical aluminum compounds. Drying process using lyophilization could obtain monodispered spherical YAG : $Ce^{3+}$ particles compare to using oven. The thermal calcination process of YAG : $Ce^{3+}$ precursors under the temperature of $1200^{\circ}C$ for 6 h was enough to obtain 400~500 nm sized YAG particles with pure YAG phase.

An Experimental Study of Nano PM Emission Characteristics of Commercial Diesel Engine with Urea-SCR System to Meet EURO-IV (상용디젤엔진의 EURO-IV 배기규제 대응을 위한 Urea-SCR 시스템의 나노입자 배출특성에 관한 실험적 연구)

  • Lee, Chun-Hwan;Cho, Taik-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.128-136
    • /
    • 2007
  • It is well known that two representative methods satisfy EURO-IV regulation from EURO-III. The first method is to achieve the regulation through the reduction of NOx in an engine by utilizing relatively high EGR rate and the elimination of subsequently increased PM by DPF. However, it results in the deterioration of fuel economy due to relatively high EGR rate. The second is to use the high combustion strategy to reduce PM emission by high oxidation rate and trap the high NOx emissions with DeNOx catalysts such as Urea-SCR. While it has good fuel economy relative to the first method mentioned above, its infrastructure is demanded. In this paper, the number distribution of nano PM has been evaluated by Electrical Low Pressure Impactor(ELPI) and CPC in case of Urea-SCR system in second method. From the results, the particle number was increased slightly in proportion to the amount of urea injection on Fine Particle Region, whether AOC is used or not. Especially, in case of different urea injection pressure, the trends of increasing was distinguished from low and high injection pressure. As low injection pressure, the particle number was increased largely in accordance with the amount of injected urea solution on Fine Particle Region. But Nano Particle Region was not. The other side, in case of high pressure, increasing rate of particle number was larger than low pressure injection on Nano Particle Region. From the results, the reason of particle number increase due to urea injection is supposed that new products are composited from HCNO, sulfate, NH3 on urea decomposition process.

Understanding to Enhance Efficiency of Nitrogen Uses in a Reclaimed Tidal Soil

  • Lee, Sang-Eun;Kim, Hye-Jin;Park, Mi-Suk;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.955-960
    • /
    • 2012
  • In most agricultural soils, ammonium ($NH_4{^+}$) from fertilizer is quickly converted to nitrate ($NO_3{^-}$) by the process of nitrification which is crucial to the efficiency of N fertilizers and their impact on the environment. The salinity significantly affects efficiency of N fertilizer in reclaimed tidal soil, and the soil pH may influence the conversion rate of ammonium to nitrate and ultimately affect nitrogen losses from the soil profile. Several results suggest that pH has important effects on recovery of fall-applied N in the spring if field conditions are favorable for leaching and denitrification except that effects of soil pH are not serious under unfavorable conditions for N loss by these mechanisms. Soil pH, therefore, deserves attention as an important factor in the newly reclaimed tidal soils with applying N. However, fate of N studies in a newly reclaimed tidal soils have been rarely studied, especially under the conditions of saline-sodic and high pH. Therefore, understanding the fate of nitrogen species transformed from urea treated into the reclaimed tidal soil is important for nutrient management and environmental quality. In this article, we reviewed yields of rice and fate of nitrogen with respect to the properties of reclaimed tidal soils.

Continuous Measurement of Ammonium-nitrogen and Nitrate-nitrogen using a Ion-Selective Microelectrode (이온선택성 미소전극을 이용한 암모니아성 질소 및 질산성 질소의 연속 농도 측정)

  • Lim, Mi-Ji;Seon, Ji-Yun;Park, Jeung-Jin;Byun, Im-Gyu;Park, Tae-Joo;Lee, Tae-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.718-724
    • /
    • 2008
  • The ion selective microelectrode (ISME) has been used for measuring the ion profile of DO, $NH_4{^+}-N$, $NO_2{^-}-N$ and $NO_3{^-}-N$ in biofilm. In this study we evaluated the detection limit and validity of ISME and applied ISME for the continuous measurement of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentration in the modified Ludzack-Ettinger (MLE) process. Average detection limits of $NH_4{^+}-N$ and $NO_3{^-}-N$ ISME were $10^{-4.44}M$ and $10^{-4.62}M$, respectively. Since the ISME with $5{\sim}10{\mu}m$ of tip diameter showed a faster response time than that of $1{\sim}5{\mu}m$, the ISME with a tip diameter of $5{\sim}10{\mu}m$ was fabricated and used to make real-time ion detections. Direct monitoring of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentrations in the aerobic (2) tank causes the instability of the electromotive force (EMF) for the initial 5~8 hours and also causes remarkable error values of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentration. This phenomenon is caused by aeration and mixing in the reactor. Thus, the measuring chamber was newly designed for the aerobic (2) tank and then the EMF of the ISME were stabilized in less than 1 hour. Errors of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentration were decreased after stabilization of the EMF. The ISME analysis were well corresponded to the results of auto analyzer and ion chromatography. Consequently, the concentration of $NH_4{^+}-N$ and $NO_3{^-}-N$ could be continuously measured for 178 hours by the ISME.

Characteristics of Nutrient Distribution by the Natural and Artificial Controlling Factors in Small Stream Estuary (소하천 하구(남해 당항포)에서 자연적, 인위적 요인이 영양염 분포에 미치는 영향)

  • KANG, SUNGCHAN;PARK, SOHYUN;AN, SOONMO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.1
    • /
    • pp.1-17
    • /
    • 2017
  • This study was conducted to investigate the nutrient distribution and controlling factors in small stream estuaries. The seasonal variations of nutrient concentration (nitrate, ammonium and phosphate) were observed from 2010 to 2012 in the three streams located in Dang-hang (closed estuary: Go-seong, open estuary: Gu-man and Ma-am). The nutrient concentrations in Go-seong were significantly higher than other estuaries, because Go-seong is relatively large and has large nutrient load from the watershed. The dyke located at the estuary, also, caused the high nutrient concentration by reducing the dilution and increasing residence time. In all three streams, nitrate concentration was high at upstream and decreased toward the downstream, because high load of nutrient input were located at upstream. Dilution and biogeochemical removal toward the downstream also caused the trends. Especially, denitrification, a typical nitrogen removing process showed clear tendency of gradual decreasing from upstream to downstream. However, Ammonium and phosphate concentrations were high at upstream and decreased toward the downstream only when the nutrient loads from the rivers were high. Nutrient concentrations were low in summer and high in winter. Freshwater discharge in summer caused a decrease of the residence time and increase of the transport of nutrients to downstream and reduced the nutrient concentrations in the estuary. Nutrient removal by the biological production during high temperature periods also affected the low nutrient concentrations. Small stream estuaries showed distinct nutrient dynamics. It is necessary to understand these characteristics in order to properly manage the small stream estuary.