• Title/Summary/Keyword: amino acid metabolism

Search Result 323, Processing Time 0.037 seconds

Regulation of Branched-Chain, and Sulfur-Containing Amino Acid Metabolism by Glutathione during Ultradian Metabolic Oscillation of Saccharomyces cerevisiae

  • Sohn Ho- Yong;Kum Eun-Joo;Kwon Gi-Seok;Jin Ingnyol;Kuriyama Hiroshi
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.375-380
    • /
    • 2005
  • Autonomous ultradian metabolic oscillation (T$\simeq$50 min) was detected in an aerobic chemostat culture of Saccharomyces cerevisiae. A pulse injection of GSH (a reduced form of glutathione) into the culture induced a perturbation in metabolic oscillation, with respiratory inhibition caused by $H_2S$ burst pro-duction. As the production of $H_2S$ in the culture was controlled by different amino acids, we attempted to characterize the effects of GSH on amino acid metabolism, particularly with regard to branched chain and sulfur-containing amino acids. During stable metabolic oscillation, concentrations of intra-cellular glutamate, aspartate, threonine, valine, leucine, isoleucine, and cysteine were observed to oscil-late with the same periods of dissolved $O_2$ oscillation, although the oscillation amplitudes and maximal phases were shown to differ. The methionine concentration was stably maintained at 0.05 mM. When GSH (100 $\mu$M) was injected into the culture, cellular levels of branched chain amino acids increased dramatically with continuous $H_2S$production, whereas the cysteine and methionine concentrations were noticeably reduced. These results indicate that GSH-dependent perturbation occurs as the result of the promotion of branched chain amino acid synthesis and an attenuation of cysteine and methionine synthesis, both of which activate the generation of $H_2S$. In a low sulfate medium containing 2.5 mM sulfate, the GSH injections did not result in perturbations of dissolved $O_2$ NAD(P)H redox oscillations without burst $H_2S$ production. This suggests that GSH-dependent perturbation is intimately linked with the metabolism of branched-chain amino acids and $H_2S$ generation, rather than with direct GSH-GSSG redox control.

Hepatic Metabolism of Sulfur Amino Acids During Septic Shock (패혈성 쇼크에서 간의 유황함유 아미노산 대사)

  • Kang, Keon-Wook;Kim, Sang-Kyum
    • YAKHAK HOEJI
    • /
    • v.51 no.6
    • /
    • pp.383-388
    • /
    • 2007
  • It has been reported that sulfur-containing intermediates or products in the transsulfuration pathway including S-adenosylmethionine, 5'-methylthioadenosine, glutathione and taurine can prevent liver injury mediated by inflammation response induced by lipopolysaccharide (LPS) treatment. The present study examines the modulation of hepatic metabolism of sulfur amino acid in a model of acute sepsis induced by LPS treatment (5 mg/kg, iv). Serum TNF-alpha and hepatotoxic parameters were significantly increased in rats treated with LPS, indicating that LPS results in sepsis at the doses used in this study. LPS also induced oxidative stress determined by increases in malondialdehyde levels and decreases in total oxy-radical scavenging capacities. Hepatic methionine and glutathione concentrations were decreased, but S-adenosylho-mocysteine, cystathionine, cysteine, hypotaurine and taurine concentrations were increased. Hepatic protein expression of methionine adenosyltransferase, cystathionine beta-synthase and cysteine dioxygenase were induced, but gamma-glutamylcysteine ligase catalytic subunit levels were decreased. The results show that sepsis activates transsulfuration pathway from methionine to cysteine, suggesting an increased requirement for methionine during sepsis.

Influence of Amino Acid and Vitamin Addition on the Growth and Metabolism of a Hybridoma in Batch Culture (하이브리도마의 회분식배양에서 아미노산과 비타민의 첨가에 따른 세포성장과 대사의 변화)

  • 이동섭;박홍우
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.289-294
    • /
    • 1998
  • The effects of various step-fortifications of the initial medium with amino acids, glucose, and vitamines on the growth and metabolism of a hybridoma cell line in batch cultures were quantified. Comparisons between the metabolic rates of the various cultivations were made for the exponential growth phase. Fortification of the basal medium resulted in higher cell densities through a prolonged growth phase, but the maximum specific growth rate was not affected. The uptake rate of glutamine increased with the addition of amino acids but did not change upon the addition of glucose or vitamines. The specific glucose consumption decreased slightly with the addition of amino acids but increased production of lactate and {{{{ { NH}`_{4 } ^{ +} }}}}. A reciprocal relationship between the yields of {{{{ { NH}`_{4 } ^{+ } }}}} and lactate indicated a joint regulation of glycolysis and glutaminolysis.

  • PDF

Effects of dietary valine:lysine ratio on the performance, amino acid composition of tissues and mRNA expression of genes involved in branched-chain amino acid metabolism of weaned piglets

  • Xu, Ye Tong;Ma, Xiao Kang;Wang, Chun Lin;Yuan, Ming Feng;Piao, Xiang Shu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.106-115
    • /
    • 2018
  • Objective: The goal of this study was to investigate the effects of dietary standard ileal digestible (SID) valine:lysine ratios on performance, intestinal morphology, amino acids of liver and muscle, plasma indices and mRNA expression of branched-chain amino acid (BCAA) metabolism enzymes. Methods: A total of 144 crossbred pigs (Duroc${\times}$Landrace${\times}$Large White) weaned at $28{\pm}4days$ of age ($8.79{\pm}0.02kg$ body weight) were randomly allotted to 1 of 4 diets formulated to provide SID valine:lysine ratios of 50%, 60%, 70%, or 80%. Each diet was fed to 6 pens of pigs with 6 pigs per pen (3 gilts and 3 barrows) for 28 days. Results: Average daily gain increased quadratically (p<0.05), the villous height of the duodenum, jejunum and ileum increased linearly (p<0.05) as the SID valine:lysine ratio increased. The concentrations of plasma ${\alpha}-keto$ isovaleric and valine increased linearly (p<0.05), plasma aspartate, asparagine and cysteine decreased (p<0.05) as the SID valine:lysine ratio increased. An increase in SID lysine:valine levels increased mRNA expression levels of mitochondrial BCAA transaminase and branched-chain ${\alpha}-keto$ acid dehydrogenase in the longissimus dorsi muscle (p<0.05). Conclusion: Using a quadratic model, a SID valine:lysine ratio of 68% was shown to maximize the growth of weaned pigs which is slightly higher than the level recommended by the National Research Council.

Free amino acids of brown rice in relation to specific gravity grade (비중선별(比重選別) 현미중(玄米中) 유리 Amino산 함량)

  • Park, H.;Chun, J.K.;Cho, I.H.
    • Applied Biological Chemistry
    • /
    • v.15 no.1
    • /
    • pp.35-40
    • /
    • 1972
  • The contents of free amino acids in deembryod brown rice of two varieties were investigated by amino acid autoanalizer in relation to specific gravity grade. The analytical methods of free amino acid were also discussed. 1) The lower the specific gravity of the unhulled rice the higher the content of total free amino acids in the deembryod brown rice, and the similar trend appears to hold on each amino acids. 2) Main free amino acids were serine+asparagine, glutamic acid, aspartic acid, alanine and valine, and maximum values of them were 7.3, 5.1, 4.0, 3.4, 0.9mg/100g rice, respectively. They consist about 85% of total free amino acids in most cases. 3) The contents of soluble nitrogen and free amino acids appear to be lower in high protein variety (IR 667) than in low protein variety (Jinhung). The percentage of free amino acid nitrogen to soluble nitrogen, however, appears to be higher in high protein variety (IR 667). 4) Alanine was much lower than aspartic acid in IR 667 having Indica blood while alanine appears to be higher than aspartic acid in Jinhung (Japonica rice) suggesting varietal difference in amino acid metabolism. 5) Threonine peak was overlaped with glutamine, and serine was with asparagine in this study.

  • PDF

The Effect of Silk Amino Acid Supplementation on the Level of Blood Energy Substrates and Hormones during Prolonged Exercise

  • Zhang Seok-Am;Lee Nam-Hee;Kim Yong-Hwan
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.171-184
    • /
    • 2004
  • The silk amino acid supplementation is unknown to affect the release of several hormones related to energy production and metabolism during prolonged exercise. This study examined the effects of silk amino acid supplementation on the level of blood amino acid, energy substrates and hormones level during prolonged treadmill exercise in college taekwondo player. A prolonged treadmill test was carried out 60 min at 65% of maximal heart rate on 8 athletics. Blood samples were obtained form antecubital vein of subjects at rest bed 30 minute before test, after exercise and rest 1 hour. The subjects were supplemented silk amino acid (6,390 mg/day) fur 4 week. The silk amino acid supplementation did not produce significant changes on the levels of blood lactate, ammonia, amino acid, glucose, triglyceride, total cholesterol, HDL, LDL, seratonin and leptin at rest bed 30 minute before test, after exercise and rest 30 minute. The silk amino acid 4 week supplementation did not affect the levels of blood amino acid, energy substrates and hormones during prolonged treadmill exercise.

  • PDF

Metabolomic profiling of postmortem aged muscle in Japanese Brown beef cattle revealed an interbreed difference from Japanese Black beef

  • Susumu Muroya;Riko Nomura;Hirotaka Nagai;Koichi Ojima;Kazutsugu Matsukawa
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.506-520
    • /
    • 2023
  • Objective: Japanese Brown (JBR) cattle, especially the Kochi (Tosa) pedigree (JBRT), is a local breed of moderately marbled beef. Despite the increasing demand, the interbreed differences in muscle metabolites from the highly marbled Japanese Black (JBL) beef remain poorly understood. We aimed to determine flavor-related metabolites and postmortem metabolisms characteristic to JBRT beef in comparison with JBL beef. Methods: Lean portions of the longissimus thoracis (loin) muscle from four JBRT cattle were collected at 0, 1, and 14 d postmortem. The muscle metabolomic profiles were analyzed using capillary electrophoresis time-of-flight mass spectrometry. The difference in post-mortem metabolisms and aged muscle metabolites were analyzed by statistical and bioinformatic analyses between JBRT (n = 12) and JBL cattle (n = 6). Results: A total of 240 metabolite annotations were obtained from the detected signals of the JBRT muscle samples. Principal component analysis separated the beef samples into three different aging point groups. According to metabolite set enrichment analysis, post-mortem metabolic changes were associated with the metabolism of pyrimidine, nicotinate and nicotinamide, purine, pyruvate, thiamine, amino sugar, and fatty acid; citric acid cycle; and pentose phosphate pathway as well as various amino acids and mitochondrial fatty acid metabolism. The aged JBRT beef showed higher ultimate pH and lower lactate content than aged JBL beef, suggesting the lower glycolytic activity in postmortem JBRT muscle. JBRT beef was distinguished from JBL beef by significantly different compounds, including choline, amino acids, uridine monophosphate, inosine 5'-monophosphate, fructose 1,6-diphosphate, and betaine, suggesting interbreed differences in the accumulation of nucleotide monophosphate, glutathione metabolism, and phospholipid metabolism. Conclusion: Glycolysis, purine metabolism, fatty acid catabolism, and protein degradation were the most common pathways in beef during postmortem aging. The differentially expressed metabolites and the relevant metabolisms in JBRT beef may contribute to the development of a characteristic flavor.

Amino acids in Embryo and Endosperm of Brown Rice different in Specific Gravity (비중선별(比重選別) 현미(玄米)의 배아(胚芽) 및 배유중(胚乳中) 아미노산(酸) 함량(含量))

  • Park, Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.12-16
    • /
    • 1974
  • The amino acid pattern of embryo and endosperm of brown rice different in specific gravity was investigated using Jinheung (local leading temperate variety) and IR667-Suweon 213 (high-yielding newly bred tropical variety). 1. Embryo of IR667 (higher protein rice) showed lower protein, and lower lysine or essential amino acid per protein than that of Jinheung (lower protein rice). 2. In both embryo and endosperm nitrogen recovery as amino acids was highest in middle class of specific gravity and lowest in low class indicating that abundancy of non-protein nitrogen in low class and decomposition of amino acids by starch in high specific gravity class. 3. In both embryo and endosperm IR667 showed abundancy in order of glutamic acid, aspartic acid while Jinheung showed glutamic acid, arginine, suggesting varietal difference in nitrogen metabolism. 4. In both IR667 and Jinheung least amino acid was histidine and next leucine in embryo but histidine and next threonine in endosperm, suggesting organ difference in nitrogen metabolism.

  • PDF

Mechanisms of amino acid sensing in mTOR signaling pathway

  • Kim, Eun-Jung
    • Nutrition Research and Practice
    • /
    • v.3 no.1
    • /
    • pp.64-71
    • /
    • 2009
  • Amino acids are fundamental nutrients for protein synthesis and cell growth (increase in cell size). Recently, many compelling evidences have shown that the level of amino acids is sensed by extra- or intra-cellular amino acids sensor(s) and regulates protein synthesis/degradation. Mammalian target of rapamycin complex 1 (mTORC1) is placed in a central position in cell growth regulation and dysregulation of mTOR signaling pathway has been implicated in many serious human diseases including cancer, diabetes, and tissue hypertrophy. Although amino acids are the most potent activator of mTORC1, how amino acids activate mTOR signaling pathway is still largely unknown. This is partly because of the diversity of amino acids themselves including structure and metabolism. In this review, current proposed amino acid sensing mechanisms to regulate mTORC1 and the evidences pro/against the proposed models are discussed.