Acknowledgement
We thank the personnel at the cattle houses in Kochi University and the Livestock Research Support Center of the NARO Institute of Livestock and Grassland Science for their support. We also thank Dr. H. Shingu, Mr. M. Hayashi, and Ms. M. Ichimura for technical support.
References
- Sumio Y. Overview of fattening strategy for Japanese Brown beef cattle. Nihon Danchi Chikusan Gakkaihou 2015;58:149-55. https://doi.org/10.11461/jwaras.58.149
- Kaneda M, Lin BZ, Sasazaki S, Oyama K, Mannen H. Allele frequencies of gene polymorphisms related to economic traits in Bos taurus and Bos indicus cattle breeds. Anim Sci J 2011;82:717-21. https://doi.org/10.1111/j.1740-0929.2011.00910.x
- Hirooka H, Groen AF, Matsumoto M. Genetic parameters for growth and carcass traits in Japanese brown cattle estimated from field records. J Anim Sci 1996;74:2112-6. https://doi.org/10.2527/1996.7492112x
- Kahi AK, Oguni T, Sumio Y, Hirooka H. Genetic relationships between growth and carcass traits and profitability in Japanese Brown cattle. J Anim Sci 2007;85:348-55. https://doi.org/10.2527/jas.2005-657
- Matsuzaki M, Takizawa S, Ogawa M. Plasma insulin, metabolite concentrations, and carcass characteristics of Japanese Black, Japanese Brown, and Holstein steers. J Anim Sci 1997;75:3287-93. https://doi.org/10.2527/1997.75123287x
- Nakamura YN, Tsuneishi E, Kamiya M, Yamada A. Histological contribution of collagen architecture to beef toughness. J Food Sci 2010;75:E73-7. https://doi.org/10.1111/j.1750-3841.2009.01446.x
- Matsumoto H, Kimura S, Nagai Y, et al. Leptin gene contributes to beef marbling standard, meat brightness, meat firmness, and beef fat standard of the Kumamoto sub-breed of Japanese Brown cattle. Anim Sci J 2022;93:e13698. https://doi.org/10.1111/asj.13698
- Honda T, Fujii T, Nomura T, Mukai F. Evaluation of genetic diversity in Japanese Brown cattle population by pedigree analysis. J Aim Beed Genet 2006;123:172-9. https://doi.org/10.1111/j.1439-0388.2006.00586.x
- Noguchi T, Kikuchi M, Abe S. A study on the new effort and achievement of beef cattle area in supply of japanese brown : focusing on "Tosa Akaushi" of kochi prefecture. Agric Mark J Japan 2015;24:54-60. https://doi.org/10.18921/amsj.24.1_54
- Muroya S, Ueda S, Komatsu T, Miyakawa T, Ertbjerg P. MEATabolomics: muscle and meat metabolomics in domestic animals. Metabolites 2020;10:188. https://doi.org/10.3390/metabo10050188
- Terasaki M, Kajikawa M, Fujita E, Ishii K. Studies on the flavor of meats. Part I. Formation and degradation of inosinic acids in meats. Agric Biol Chem 1965;29:208-15. https://doi.org/10.1080/00021369.1965.10858377
- Muroya S, Oe M, Nakajima I, Ojima K, Chikuni K. CE-TOF MS-based metabolomic profiling revealed characteristic metabolic pathways in postmortem porcine fast and slow type muscles. Meat Sci 2014;98:726-35. https://doi.org/10.1016/j.meatsci.2014.07.018
- Muroya S, Ertbjerg P, Pomponio L, Christensen M. Desmin and troponin T are degraded faster in type IIb muscle fibers than in type I fibers during postmortem aging of porcine muscle. Meat Sci 2010;86:764-9. https://doi.org/10.1016/j.meatsci.2010.06.019
- Muroya S, Kitamura S, Tanabe S, Nishimura T, Nakajima I, Chikuni K. N-terminal amino acid sequences of troponin T fragments, including 30 kDa one, produced during post-mortem aging of bovine longissimus muscle. Meat Sci 2004;67:19-24. https://doi.org/10.1016/j.meatsci.2003.08.018
- Lametsch R, Karlsson A, Rosenvold K, Andersen HJ, Roepstorff P, Bendixen E. Postmortem proteome changes of porcine muscle related to tenderness. J Agric Food Chem 2003;51:6992-7. https://doi.org/10.1021/jf034083p
- Kitamura S, Muroya S, Tanabe S, Okumura T, Chikuni K, Nishimura T. Mechanism of production of troponin T fragments during postmortem aging of porcine muscle. J Agric Food Chem 2005;53:4178-81. https://doi.org/10.1021/jf047974l
- Huff Lonergan E, Zhang W, Lonergan SM. Biochemistry of postmortem muscle - lessons on mechanisms of meat tenderization. Meat Sci 2010;86:184-95. https://doi.org/10.1016/j.meatsci.2010.05.004
- Macbride MA, Parrish Jr. FC. The 30,000-dalton component of tender bovine longissimus muscle. J Food Sci 1977;42:1627-9. https://doi.org/10.1111/j.1365-2621.1977.tb08442.x
- Watanabe A, Tsuneishi E, Takimoto Y. Analysis of ATP and its breakdown products in beef by reversed-phase HPLC. J Food Sci 1989;54:1169-72. https://doi.org/10.1111/j.1365-2621.1989.tb05948.x
- Seewald MJ, Iaizzo PA, Heisswolf E, Eichinger HM. Effects of meat quality and storage on the breakdown of adenosine triphosphate in muscle from swine. Meat Sci 1993;35:47-61. https://doi.org/10.1016/0309-1740(93)90069-t
- Calkins CR, Hodgen JM. A fresh look at meat flavor. Meat Sci 2007;77:63-80. https://doi.org/10.1016/j.meatsci.2007.04.016
- Koutsidis G, Elmore JS, Oruna-Concha MJ, Campo MM, Wood JD, Mottram DS. Water-soluble precursors of beef flavour. Part II: Effect of post-mortem conditioning. Meat Sci 2008;79:270-7. https://doi.org/10.1016/j.meatsci.2007.09.010
- Arihara K, Yokoyama I, Ohata M. Chapter Six - DMHF (2,5-dimethyl-4-hydroxy-3(2H)-furanone), a volatile food component with attractive sensory properties, brings physiological functions through inhalation. In: Toldra F, editor. Advances in food and nutrition research. Academic Press; 2019. p. 239-58. https://doi.org/10.1016/bs.afnr.2019.05.001
- Muroya S, Oe M, Ojima K, Watanabe A. Metabolomic approach to key metabolites characterizing postmortem aged loin muscle of Japanese Black (Wagyu) cattle. Asian-Australas J Anim Sci 2019;32:1172-85. https://doi.org/10.5713/ajas.18.0648
- Muroya S, Oe M, Ojima K. Thiamine accumulation and thiamine triphosphate decline occur in parallel with ATP exhaustion during postmortem aging of pork muscles. Meat Sci 2018;137:228-34. https://doi.org/10.1016/j.meatsci.2017.11.035
- Ma D, Kim YHB, Cooper B, et al. Metabolomics profiling to determine the effect of postmortem aging on color and lipid oxidative stabilities of different bovine muscles. J Agric Food Chem 2017;65:6708-16. https://doi.org/10.1021/acs.jafc.7b02175
- Yu Q, Tian X, Shao L, Li X, Dai R. Targeted metabolomics to reveal muscle-specific energy metabolism between bovine longissimus lumborum and psoas major during early post-mortem periods. Meat Sci 2019;156:166-73. https://doi.org/10.1016/j.meatsci.2019.05.029
- Kodani Y, Miyakawa T, Komatsu T, Tanokura M. NMR-based metabolomics for simultaneously evaluating multiple determinants of primary beef quality in Japanese Black cattle. Sci Rep 2017;7:1297. https://doi.org/10.1038/s41598-017-01272-8
- Graham SF, Kennedy T, Chevallier O, et al. The application of NMR to study changes in polar metabolite concentrations in beef longissimus dorsi stored for different periods post mortem. Metabolomics 2010;6:395-404. https://doi.org/10.1007/s11306-010-0206-y
- Straadt IK, Aaslyng MD, Bertram HC. An NMR-based metabolomics study of pork from different crossbreeds and relation to sensory perception. Meat Sci 2014;96:719-28. https://doi.org/10.1016/j.meatsci.2013.10.006
- Ueda S, Iwamoto E, Kato Y, Shinohara M, Shirai Y, Yamanoue M. Comparative metabolomics of Japanese Black cattle beef and other meats using gas chromatography-mass spectrometry. Biosci Biotechnol Biochem 2019;83:137-47. https://doi.org/10.1080/09168451.2018.1528139
- National Agriculture and Food Research Organization. Japanese feeding standard for beef cattle 2008 edn. (in Japanese). Tokyo, Japan: Japan Livestock Industry Association; 2009.
- Jia W, Li R, Wu X, Liu L, Liu S, Shi L. Molecular mechanism of lipid transformation in cold chain storage of Tan sheep. Food Chem 2021;347:129007. https://doi.org/10.1016/j.foodchem.2021.129007
- Mottram DS. Flavour formation in meat and meat products: a review. Food Chem 1998;62:415-24. https://doi.org/10.1016/S0308-8146(98)00076-4