• Title/Summary/Keyword: ambient drying

Search Result 76, Processing Time 0.021 seconds

Crack Control of Early-Age High Strength Concrete Deck in Composite Bridge (합성거더교 초기재령 고강도 콘크리트 바닥판의 균열 제어)

  • Bae, Sung-Geun;Kim, Se-Hun;Jeong, Sang-Kyoon;Cha, Soo-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.493-496
    • /
    • 2008
  • The risk of transverse cracking in concrete decks of composite bridges is affected by many factors related to the bridge design, materials, and construction. Among others, the thermal and shrinkage stresses are the most important factors that affect the transverse cracking in early-age concrete decks. The thermal stress at the concrete deck is mainly affected by both ambient temperature and solar radiation. The shrinkage stress at the general strength concrete deck is mainly affected by drying shrinkage and the high strength concrete deck is mainly affected by autogeneous shrinkage. Three-dimensional finite element models of composite bridges were made to investigate the stress due to thermal and shrinkage stress.

  • PDF

Drying and Low Temperature Storage System of Agricultural Products using the Air to Air Heat Pump (II) - Performance of Low Temperature Storage for Apples - (히트펌프를 이용한 농산물 건조 및 저온저장 시스템 (II) - 사과의 저온저장 성능 -)

  • Kang, Y.K.;Han, C.S.;Keum, D.H.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.2 s.121
    • /
    • pp.102-108
    • /
    • 2007
  • Heat pump systems are recognized to be heating and cooing systems. In this study, to check the practical application possibility of heat pump systems as low temperature storage systems and get basic data, apples of a long term storage items were stored and performance of low temperature storage and quality changes of apples were evaluated. Cooling coefficient of performance of the system was from 1.1 to 1.3. Although ambient air temperature varied widely from $-13^{\circ}C$ to $29.6^{\circ}C$ during low temperature storage period from January to June, the average temperature of low temperature storage chamber was $1.1^{\circ}C$ at setting temperature of $1.5^{\circ}C$. Sucrose of apples stored by the heat pump decreased from initial sucrose of 15.4% (Brix number) to final sucrose of 14.3%. Weight loss ratio of apples was 9.7% and internal and external view of apples after low temperature storage were very satisfactory with the naked eye.

The study on the estimation of heat transfer coefficient through the counterflow concentric tube using refrigerant and moisture air (냉매와 습공기가 교차하는 2중관에서 전열계수 예측을 위한 연구)

  • 조권희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.687-694
    • /
    • 1999
  • This study was conducted to develop new drying process for automatic control and marine engi-neering system. Air-water tests were carried out to investigate dryer performance. The dispersed flow in he dryer test apparatuses was also simulated by using a numerical code which solves the Dittus-Boelter equation for continuous liquid phase and the Reynolds equation of droplet motion for continuous liquid phase and the Reynolds equation of droplet motion for dispersed phase to predict droplet removal efficiency. Proper conditions for dehumidification were optimized by response ambient conditions. When the selected indexes were constrained in the range of 85-98% moisture content above $15^{\circ}$ and more than mass flow rates of moist air 750kg/h. The numerical results were compared with the experimental data pertaining to the removal effi-ciency at chamber stage and overall pressure drop along concentric tubes Good agreement was obtained as for the efficiency while relatively poor agreement was obtained for the relative humidity. The results also showed that the efficiency depended strongly on the relative humidity at the inlet condition which indicated the importance of estimating the heat exchanger length. Effects of some design parameters in both removal efficiency and breakthrough onset condition are discussed.

  • PDF

Biological monitoring of dye manufacturing workers by hemoglobin adducts (헤모글로빈 부가체를 이용한 염료제조 근로자의 노출평가)

  • Jhang, Kyuyeub;Lee, Keungjong;Kim, Chinyon;Yoon, youngshik;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.2
    • /
    • pp.124-139
    • /
    • 2000
  • This study was performed to investigate monoacetylbenzidine(MABZ) and benzidine(BZ) hemoglobin adducts among workers who worked at benzidine based dye manufacturing company, and exposed by benzidine and benzidine based dye. The hemoglobin adducts were compared with work environment assessment result for evaluating the usefulness of biological monitoring. The mean BZ hemoglobin adducts among the first synthesis worker's hemoglobin adducts were $40.69{\mu}gBZ/g$ Hb and those of dry and packing workers were $22.14{\mu}gBZ/g$ Hb. The mean of MABZ hemoglobin adducts among 1st synthesis workers were $255.84{\mu}gMABZ/g$ Hb, dispersion worker's hemoglobin adducts were $76.17{\mu}gMABZ/g$ Hb and synthesis worker's hemoglogin adducts were $28.66{\mu}gMABZ/g$ Hb. Work environment assessment results during past 3 years were $0.0065mg/m^3$ and $0.5659mg/m^3$ of benzidine based dye concentration in ambient air of drying and packing only. Dye producing process was categorized by the possibility of exposure to benzidine and benzidine based dye. BZ and MABZ hemoglobin adducts were $19.55{\mu}gBZ/g$ Hb, $119.80{\mu}gMABZ/g$ Hb among workers who exposed by benzidine dihydrochloride and $16.32{\mu}gBZ/g$ Hb, $316.56{\mu}gMABZ/g$ Hb among workers who exposed by benzidine based dye. BZ hemoglobin adducts were not detected among control group and MABZ hemoglobin adducts were $5.33{\mu}gMABZ/g$ Hb. The differences between control and other exposed group was statistically significant. But there was no statistically significant differences between benzidine dihydrochloride exposed process and benzidine based dye exposed group. BZ and MABZ hemoglobin adducts were $2.23{\mu}gBZ/g$ Hb, $76.17{\mu}gMABZ/g$ Hb and $3.46{\mu}gBZ/g$ Hb, $21.33{\mu}gMABZ/g$ Hb. So hemoglobin adducts of MABZ were 5 ~ 30 time higher than those of BZ(P<0.003). Above results indicate that work environment assessment didn't detected benzidine and benzidine based dye in ambient air but biological monitoring detected those of hemoglobin adducts. Two group's hemoglobin adducts exposed benzidine dihydrochloride and benzidine based dye were high level but wasn't statistically significant and those were not detected in control group.

  • PDF

Effects of particle size on processing variables and green microstructure in gelcast alumina green bodies (겔-케스팅한 알루미나 성형체에서 출발입도가 공정변수 및 성형 미세구조에 미치는 영향)

  • Ha, Chang-Gi;Kim, Jae-Won;Jo, Chang-Yong;Baek, Un-Gyu;Jeong, Yeon-Gil
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.869-878
    • /
    • 2001
  • Alumina $(Al_2O_3)$ green bodies were fabricated by gel-casting using three kinds of alumina with different particle size (mean particle size: 4.6 $\mu\textrm{m}$, 0.32 $\mu\textrm{m}$, 10nm). The effects of particle size on gel-casting process and green microstructure were investigated. The optimum dispersion conditions using ammonium salt (D-3019) as dispersant were 0.2 wt% (4.63 $\mu\textrm{m}$), 0.5 wt% (0.32 $\mu\textrm{m}$), and 5.0 wt% (10 nm), in high solid loading. The optimum solid loading of each starting material for gel-casting was obtained as 59 vol% (4.63 $\mu\textrm{m}$), 57 vol% (0.32 $\mu\textrm{m}$), 15 vol% (10 nm), depending on particle size, indicating that nano-size particle (10 nm) represent lower solid loading as high specific surface area than those of other two starting materials. The drying at ambient conditions (humidity; $\thickapprox$90%) was performed more than 48hrs to enable ejection of the part from the mold and then at $120^{\circ}C$ for 2hrs in an air oven, showing no crack and flaw in the dried green bodies. The pore size and distribution of the gelcast green bodies showed the significant decrease with decreasing particle size. Green microstructure was dependent on the pore size and distribution due to the particle size, and on the deairing step. The green density maximum obtained was 58.9% (4.63 $\mu\textrm{m}$), 60% (0.32 $\mu\textrm{m}$), 47% (10 nm) theoretical density (TD), and the deairing step applied before gel-casting did not affect green density.

  • PDF

Preparation of SiO2/TiO2 Composite Fine Powder by Sol-Gel Process (Sol-Gel Process를 이용한 SiO2/TiO2 복합 미립자의 합성)

  • Koo, S.M.;Lee, D.H.;Ryu, C.S.;Lee, Y.E.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.301-307
    • /
    • 1997
  • Monodisperse, spherical $SiO_2/TiO_2$ composite fine powders were prepared by modified Sol-Gel process which $TiO_2$ fine Powders was used as a seed particles for condensation of TEOS (Tetraethyl Orthosilicate). The reaction was carried out under $N_2$ atmosphere at ambient temperature using $NH_3$ as a catalyst. Ethanol was used as a solvent. Drying process was carried out with vacuum trap which cooled by liquid $N_2$. The reaction variables were the concentration of TEOS, the concentration of ammonia, the size of $TiO_2$ seed and molar ratio of $SiO_2/TiO_2$. The optimum condition for the preparation of $SiO_2/TiO_2$ composite fine powders without agglomeration was [TEOS]=0.3M, [$NH_3$]=0.7M, size of $SiO_2/TiO_2$ seed = 200~300nm.

  • PDF

Effect of Dextrin on Sorption Characteristics and Quality of Vacuum Frying Dried Carrot (감압유탕 건조당근의 흡습특성 및 품질에 미치는 덱스트린의 영향)

  • Rhee, Chul;Cho, Seung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.241-247
    • /
    • 1991
  • The objective of this experiment was to study the effect of dextrin on vacuum frying dried carrots. The concentrations of dextrin solution were 0%, 10%, 20%, 30% and the criteria for quality evaluation were sorption characteristics, rehydration power, color and crispness differences. The sorption characteristics were evaluated by Peleg's equation. Rehydration, color and crispness were determined by rehydration percentage, colorimetry and sensory evaluation, respectively. The dextrin pretreatment of carrot resulted in the reduction of adsorption rate and the equilibrium moisture content of dried carrot at various range of relative humidities, and the adsorption rate of samples pretreated with aqueous dextrin solution at different temperatures($4^{\circ}C,\;20^{\circ}C,\;30^{\circ}C$) were in the following decreasing order : control>10% dextrin>20% dextrin>30% dextrin. As the concentration of dextrin solution and ambient temperature increased, BET monomolecular layer moisture content decreased significantly. In addition, as the concentration of dextrin solution increased, the crispness intensity increased and the color of sample treated with 20% dextrin solution was similar to that of raw carrot.

  • PDF

Preparation and characterization of nanoporous monolith with high thermal insulation performance (나노 기공성 단열 실리카 모노리스 제조 및 특성 연구)

  • Choi, Hyun-Muk;Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.83-91
    • /
    • 2014
  • In this study, we synthesized two different silica monoliths by using sol-gel, solvent exchange, surface modification, ambient pressure drying processes, and surfactant-based templating technique followed by calcination process. All of the prepared two silica monoliths showed crack-free appearance with fairly good transparency, and furthermore were confirmed to have extremely high porosity, specific surface area, and mean pore size below 30 nm. The silica aerogel sample exhibited finer and more homogeneous nano-sized pore structure due to spring back effect caused by surface modification, which resulted in better thermal insulation performance. Based on measured thermal conductivities and theoretical relationship, multi-layered glass window system in which silica monolith prepared in this study was inserted as a middle layer was revealed to have superior thermal insulation performance compared to conventional air-inserted glass window system.

Investigation on Behaviors of Concrete Interfaces Repaired Using Anchors (앵커로 보수한 콘크리트 계면 거동의 고찰)

  • Song Hyung-Soo;Lee Chin-Yong;Yoon Dong-Yong;Min Chang-Shik;Choi Dong-Uk
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.885-892
    • /
    • 2005
  • Recently, the damaged concrete structures are often strengthened or repaired using the polymer concrete or the polymer cement mortar. In the repaired concrete structures at early ages, internal stresses could be developed due to the differential drying shrinkage of the repair material. Due to the difference of the thermal coefficients of the repair material and existing concrete, additional stresses also could be developed as the structures are subjected to the ambient temperature changes. Theses environmentally-induced stresses can sometimes be large enough to cause damage to the structures, such as debonding of the interface between the two materials. In this study, a rational procedure was developed where anchors can be designed and installed to prevent damages in such structures by thermally-induced stresses. Finally, through the experimental study and numerical study, the effects of the repair method using anchors with debonding was investigated and discussed the results.

Hydrodynamics and Solid Circulation Characteristics of Oxygen Carrier for 0.5 MWth Chemical Looping Combustion System (0.5 MWth 케미컬루핑 연소시스템 적용을 위한 산소전달입자의 수력학 특성 및 고체순환 특성)

  • RYU, HO-JUNG;KIM, JUNGHWAN;HWANG, BYUNG WOOK;NAM, HYUNGSEOK;LEE, DOYEON;JO, SUNG-HO;BAEK, JEOM-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.635-641
    • /
    • 2018
  • To select the operating condition of 0.5 MWth chemical looping combustion system, minimum fluidization velocity, transition velocity to fast fluidization and solid circulation rate were measured using mass produced new oxygen carrier (N016-R4) which produced by spray drying method for 0.5 MWth chemical looping combustion system. A minimum fluidization velocity decreased as the pressure increased. The measured transition velocity to fast fluidization was 2.0 m/s at ambient temperature and pressure. The measured solid circulation rate increased as the solid control valve opening increased. We could control the solid circulation rate from 26 to $93kg/m^2s$. Based on the measured minimum fluidization velocity and transition velocity to fast fluidization, we choose appropriate operating conditions and demonstrated continuous solid circulation at high pressure condition (5 bar-abs) up to 24 hours.