DOI QR코드

DOI QR Code

Investigation on Behaviors of Concrete Interfaces Repaired Using Anchors

앵커로 보수한 콘크리트 계면 거동의 고찰

  • Published : 2005.12.01

Abstract

Recently, the damaged concrete structures are often strengthened or repaired using the polymer concrete or the polymer cement mortar. In the repaired concrete structures at early ages, internal stresses could be developed due to the differential drying shrinkage of the repair material. Due to the difference of the thermal coefficients of the repair material and existing concrete, additional stresses also could be developed as the structures are subjected to the ambient temperature changes. Theses environmentally-induced stresses can sometimes be large enough to cause damage to the structures, such as debonding of the interface between the two materials. In this study, a rational procedure was developed where anchors can be designed and installed to prevent damages in such structures by thermally-induced stresses. Finally, through the experimental study and numerical study, the effects of the repair method using anchors with debonding was investigated and discussed the results.

콘크리트 구조물을 보수 또는 보강하기 위해서 폴리머 콘크리트 혹은 폴리머 시멘트 모르타르를 종종 사용한다. 보수된 콘크리트 구조물의 일교차 또는 열악한 환경에 의한 온도강하 시 두 재료의 상이한 열팽창계수와 보수 재료의 초기양생 시 나타나는 건조수축으로 인해 계면에 응력이 발생하게 된다. 이러한 추가적으로 발생하는 응력은 계면의 부착력을 저하시켜 때로는 구조물에 큰 손상을 유발할 수 있다 본 연구에서는 이러한 문제를 해결하고자 단면보수 및 증대를 위해 사용되는 보수 모르타르에 섬유앵커를 추가로 적용함으로서, 부착력 저하를 감소시키는지 여부를 실험을 통하여 검토하였다. 또한 보수 단면에 적용하는 앵커가 계면 전단응력에 미치는 영향을 유한요소해석을 통하여 검토를 시도하였다.

Keywords

References

  1. 건설교통부, 도로교 설계기준, 2000, pp.21-22
  2. ACI 318-02, Building Code Requirements for Reirrforced Concrete (ACI 318-02) and Commentary (ACI 318R-02), American Concrete Institute, 2002, pp.300-436
  3. ACI 440R-96, Stae-of-the-Art Report on Fiber Reinorced Plastic(FRP) Reirrforcement for Concrete Structures, Reported by ACI Committee 440, 1996, pp.23-24
  4. Birkland, H. W., 'Differential Shrinkage in Composite Beam', Journals of American Concrete Institute, Vol.56, No. 11, 1960, pp.1123-1136
  5. Chandra, S. and Ohama, Y., Polymers in Concrete, CRC Press, 1904, pp.81 - 185
  6. Chen, D., Cheng, S., and Gerhardt, T. D., 'Thermal Stresses in Laminated Beam', Journal of Thermal Stresses, Vol.5, No.1, 1982, pp.67-84 https://doi.org/10.1080/01495738208942136
  7. Choi, D. U., Fowler, D. W., and Wheat, D. L., Tbermally-Induced Interface Stresses in Polymer Concrete-Portland Cement Concrete Composite Beams, ISAP99, International Colloquium on Adhesion between Polymer and Concrete, Dresden, Germany, 1909, pp.67 -81
  8. Choi, D. U., Fowler, D. W., and Wheat, D. L., Thermal Stresses in Polymer Concrete Overlays, America Concrete Institute, ACI Special Publication SP-166, Properties and Uses of Polymers in Concrete, 1996, pp.93-122
  9. Choi, D. U. and Lee, C.-H, 'Shrinkage-Induced Stresses at Early-Ages in Composite Concrete Beams', KCI Concrete Journal, Vol.14, No.1, 2002, pp.15-22
  10. Choi, D. U. and Lee, C. Y., 'Anchor Design to Prevent Failures in Repaired Concrete Member Subjected to Thermal Changes', Proceeding of Fourth ASPIC Chuncheon, Korea, May 2003, pp.341 -349
  11. Timoshenko, S. P., 'Analysis of Bi-Metal Thennostats', Journal of the Optical Society of America, Vol. 11, No.3, 1925, pp.233-255 https://doi.org/10.1364/JOSA.11.000233