• Title/Summary/Keyword: ambient RF

Search Result 149, Processing Time 0.025 seconds

The effect of post-annealing temperature on $Bi_{3.25}La_{0.75}Ti_3O_{12}$ thin films deposited by RF magnetron sputtering (RF magnetron sputtering법에 의한 BLT 박막의 후열처리 온도에 관한 영향)

  • Lee, Ki-Se;Lee, Kyu-Il;Park, Young;Kang, Hyun-Il;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.624-627
    • /
    • 2003
  • The BLT thin-films were one of the promising ferroelectric materials with a good leakage current and degradation behavior on Pt electrode. The BLT target was sintered at $1100^{\circ}C$ for 4 hours at the air ambient. $Bi_{3.25}La_{0.75}Ti_3O_{12}$ (BLT) thin-film deposited on $Pt/Ti/SIO_2/Si$ wafer by rf magnetron sputtering method. At annealed $700^{\circ}C$, (117) and (006) peaks appeared the high intensity. The hysteresis loop of the BLT thin films showed that the remanent polarization ($2Pr=Pr^+-Pr^-$) was $16uC/cm^2$ and leakage current density was $1.8{\times}10^{-9}A/cm^2$ at 50 kV/cm with coersive electric field when BLT thin-films were annealed at $700^{\circ}C$. Also, the thin film showed fatigue property at least up to $10^{10}$ switching bipolar pulse cycles under 7 V. Therefore, we induce access to optimum fabrication condition of memory device application by rf-magnetron sputtering method in this report.

  • PDF

The effects of annealing of the ATO films prepared by RF magnetron sputtering (RF 마그네트론 스퍼터를 이용한 ATO 박막의 열처리 효과)

  • Park, Sei-Yong;Lee, Sung-Uk;Park, Mi-Ju;Kim, Young-Ryeol;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.270-271
    • /
    • 2008
  • Antimony (6 wt%) doped tin oxide (ATO) films to improve conductivity were deposited on 7059 coming glass by RF magnetron sputtering method for application to transparent electrodes. The ATO film was deposited at a working pressure of 5 mTorr and RF power of 175 W. We investigated the effects of the post-annealing temperature on structural, electrical and optical properties of the ATO films. The films were annealed at temperatures ranging from $300^{\circ}C$ to $600^{\circ}C$ in step of $100^{\circ}C$ using RTA equipment in vacuum ambient. X-ray diffraction (XRD) measurements showed the ATO films to be crystallized with a strong (101) preferred orientation as the annealing temperature increased. Electrical resistivity decreased significantly with annealing temperatures up to $600^{\circ}C$. ATO film annealed at temperature of $600^{\circ}C$ showed the lowest resistivity of $5.6\times10^{-3}\Omega$-cm. Optical transmittance increased significantly with annealing temperatures up to $600^{\circ}C$. The highest transmittance was 90.8 % in the visible range from 400 to 800 nm.

  • PDF

Influence of Hydrogen on Al-doped ZnO Thin Films in the Process of Deposition and Annealing

  • Chen, Hao;Jin, Hu-Jie;Park, Choon-Bae;Hoang, Geun-C.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.93-96
    • /
    • 2009
  • The Al-doped ZnO (AZO) films were deposited on a glass substrate by RF magnetron sputtering in pure Ar and $Ar+H_2$ gas ambient at temperature of $100^{\circ}C$ and annealed in hydrogen ambient at the temperature range from 100 to 300 $^{\circ}C$, respectively. It was found that either the addition of hydrogen to the sputtering gas or the annealing treatment effectively reduced the resistivity of the AZO films. When the AZO films were annealed at the temperature of 300 $^{\circ}C$ for lhr in a hydrogen atmosphere, the resistivity decreased from $2.60{\times}10^{-3}\;{\Omega}cm$ to $8.42{\times}l0^{-4}\;{\Omega}cm$ for the film deposited in pure Ar gas ambient. Under the same annealing conditions of temperature and hydrogen ambient, the resistivity of AZO films deposited in the $Ar+H_2$ gas mixture decreased from $8.22{\times}l0^{-4}\;{\Omega}cm$ to $4.25{\times}l0^{-4}\;{\Omega}cm$. The lowest resistivity of $4.25{\times}l0^{-4}\;{\Omega}cm$ was obtained by adding hydrogen gas to the deposition and annealing process. X-ray diffraction (XRD) pattern of all films showed preferable growth orientation of (002) plane. The average transmittance is above 85 % and in the range of 400-1000 nm for all films.

Electrical and Structural characteristics of ITO thin films deposited under different ambient gases (분위기 가스에 따른 ITO 박막의 전기적 및 구조적 특성)

  • Heo, Ju-Hee;Han, Dae-Sub;Lee, Yu-Lim;Lee, Kyu-Mann;Kim, In-Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.4
    • /
    • pp.7-11
    • /
    • 2008
  • ITO (Indium Tin Oxide) thin films have been extensively studied for OLED devices because they have high transparent properties in the visible wavelength and a low electrical resistivity. These ITO films are deposited by rf-magnetron sputtering under different ambient gases (Ar, Ar+$O_2$ and Ar+$H_2$) at $300^{\circ}C$. In order to investigate the influences of the oxygen and hydrogen, the flow rate of oxygen and hydrogen in argon has been changed from 0.5sccm to 5sccm and from 0.01sccm to 0.25sccm respectively. The resistivity of ITO film increased with increasing flow rate of $O_2$ under Ar+$O_2$ while it is nearly constant under Ar+$H_2$. And the peak of ITO films obtained (222) and (400) orientations and the average transmittance was over 80% in the visible range. The OLED device fabricated with different ITO substrates made by configuration of ITO/$\alpha$-NPD/Alq3/LiF/Al to elucidate the performance of ITO substrate for OLED device.

  • PDF

Characteristics of IZO anode films grown on $SiO_2$/PES/$SiO_2$ substrate at room temperature for flexible displays ($SiO_2$/PES/$SiO_2$ 기판에 상온에서 성장시킨 플렉서블 디스플레이용 IZO 애노드 박막의 특성)

  • Bae, Jung-Hyeok;Moon, Jong-Min;Kim, Han-Ki;Lee, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.442-443
    • /
    • 2006
  • Electrical, optical, surface, and structural properties of amorphous indium zinc oxide (IZO) films grown on $SiO_2$/PES/$SiO_2$ substrate by a RF sputtering in pure Ar ambient at room temperature were investigated. A sheet resistance of $13.5\;{\Omega}{\square}$, average transmittance above 85 % in 550 nm, and root mean square roughness of $10.5\;{\AA}$ were obtained even in the IZO layers grown at room temperature in pure Ar ambient. Without addition of oxygen gas during IZO sputtering process, we can obtain high quality IZO anode films from the specially synthesized oxygen rich IZO target. XRD result shows that the IZO films grown at room temperature is completely amorphous structure due to low substrate temperature. In addition, the electrical and optical properties of the flexible OLED fabricated on IZO/$SiO_2$/PES/$SiO_2$ is critically influenced by the electrical properties of a IZO anode. This findings indicate that the IZO/$SiO_2$/PES/$SiO_2$ is a promising anode/substrate scheme for realizing organic based flexible displays.

  • PDF

Effect of the Concentration of Oxygen Vacancies on the Structural and Electrical Characteristics of MZO Thin Films (산소공공 농도에 따른 MZO 투명전도성 박막의 구조적 및 전기적 특성)

  • Jong Hyun Lee;Kyu Mann Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.18-22
    • /
    • 2023
  • We have investigated the effect of the concentration of oxygen vacancies on the characteristics of Mo-doped ZnO (MZO) thin films for the TCO (transparent conducting oxide). For this purpose, MZO thin films were deposited by RF magnetron sputtering at different substrate temperature from room temperature to 300℃. The electrical resistivity of the MZO films decreases with increasing substrate temperature up to 100℃ and then gradually increases at higher temperatures. To investigate the influences of the ambient gases, the flow rate of oxygen and hydrogen in argon was varied from 0.1 sccm to 0.5 sccm. The MZO thin films were preferentially oriented to the (002) direction, regardless of the ambient gases used. The electrical resistivity of the MZO thin films increased with increasing O2 flow rates, whereas the electrical resistivity decreased sharply under an Ar+H2 atmosphere and was nearly the same, regardless of the H2 flow rate used. As the oxygen vacancy concentration increases, the resistivity intended to decrease. In conclusion, Oxygen vacancy affects the MZO thin film's electrical characteristics. All the films showed an average transmittance of over 80% in the visible range.

  • PDF

Characterizations of Characterizations of Tio2 thin films with atmosphere control of the RF magnetron sputtering (RF magnetron sputter의 분위기에 따른 Tio2 박막의 특성)

  • Park, Ju-Hoon;Kim, Bong-Soo;Kim, Byung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.2
    • /
    • pp.65-69
    • /
    • 2011
  • The $Tio_2$ films were prepared on glass, silicon and quartz substrate at different temperature by radio frequency reactive magnetron sputtering under different flow ratios of Ar and O2 gases. The films were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and UV-VIS spectrophotometer. Only the anatase phase was observed in films and their diffaction peaks increased with temprature of substrate. The size of crystallites decreased with higher concentration of oxygen. Refractive index and optical absorption of thin films decreased with higher concentration of oxygen. The thin films which have good transmittance spectra and smooth surface, deposited in the sputtering ambient with 10 % of $O_2$ at the temperature from $400{\circ}C$ to $300{\circ}C$.

Growth of AlN Thin Film on Sapphire Substrates and ZnO Templates by RF-magnetron Sputtering (RF 마그네트론 스퍼터링법을 이용하여 사파이어 기판과 ZnO 박막 위에 증착한 AlN 박막의 특성분석)

  • Na, Hyun-Seok
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.58-65
    • /
    • 2010
  • AlN thin films were deposited on sapphire substrates and ZnO templates by rf-magnetron sputtering. Powder-sintered AlN target was adopted for source material. Thickness of AlN layer was linearly dependent on plasma power from 50 to 110 W, and it decreased slightly when working pressure increased from 3 to 10 mTorr due to short mean free path of source material sputtered from AlN target by Ar working gas. When $N_2$ gas was mixed with Ar, the thickness of AlN layer decreased significantly because of low sputter yield of nitrogen. AlN layer was also deposited on ZnO template. However, it showed weak thermal stability that the interface between AlN and ZnO was deteriorated by rapid thermal annealing treatment above $700^{\circ}C$. In addition, ZnO layer was largely attacked by MOCVD ambient gas of hydrogen and ammonia around $700^{\circ}C$ through inferior AlN layer deposited by sputtering. And AlN layers were fully peeled off above $900^{\circ}C$.

Electrical and Optical Properties of Amorphous ITZO Deposited at Room Temperature by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 상온 증착된 비정질 ITZO 산화물의 전기적 및 광학적 특성)

  • Lee, Ki Chang;Jo, Kwang-Min;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.239-243
    • /
    • 2014
  • The electrical and optical properties of amorphous In-Tin-Zinc-Oxide(ITZO) deposited at room temperature using rf-magnetron sputtering were investigated. The amorphous ITZO thin films were obtained at the composition of In:Sn:Zn = 6:2:2, 4:3:3, and 2:4:4, but the ITZO (8:1:1) showed a crystalline phase of bixbyite structure of In2O3. The resistivity of ITZO could be controlled by oxygen pressure in the sputtering ambient. The resistivity of post-annealed ITZO thin films exhibited the dependence on the amount of Indium. Optical energy band gap and transmittance increased as the amount of indium in ITZO increased. For the device application with ITZO, the bottom-gated thin-film transistor using ITZO as a active channel layer was fabricated. It showed a threshold voltage of 1.42V and an on/off ratio of $5.63{\times}10^7$ operated with saturation field-effect mobility of $14.2cm^2/V{\cdot}s$.

A study on the heat treatment process for AlN single crystals grown by PVT method (PVT 법으로 성장된 AlN 단결정의 열처리 공정에 대한 연구)

  • Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.2
    • /
    • pp.65-69
    • /
    • 2017
  • AlN single crystal was thermally treated at 1600, 1700 and $1800^{\circ}C$ in the ambient pressure of under 100 torr. AlN single crystal was obtained by PVT (Physial Vapor Transport) method using by a facility having a growth part which was heated by RF (Radio Frequency) induction heating. The single crystal specimens surface was evaluated by optical microscope and it was recognized that their morphology was varied with the heat treatment temperature and a set ambient pressure. In this report, the optical microscopic results were reported. According to the increase of temperature the crystal surface was etched thermally. It was evaluated by appearance of small pits on the crystal surface.