• Title/Summary/Keyword: almost von Neumann regular rings

Search Result 2, Processing Time 0.015 seconds

ON ALMOST QUASI-COHERENT RINGS AND ALMOST VON NEUMANN RINGS

  • El Alaoui, Haitham;El Maalmi, Mourad;Mouanis, Hakima
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1177-1190
    • /
    • 2022
  • Let R be a commutative ring with identity. We call the ring R to be an almost quasi-coherent ring if for any finite set of elements α1, …, αp and a of R, there exists a positive integer m such that the ideals $\bigcap{_{i=1}^{p}}\;R{\alpha}^m_i$ and AnnRm) are finitely generated, and to be almost von Neumann regular rings if for any two elements a and b in R, there exists a positive integer n such that the ideal (αn, bn) is generated by an idempotent element. This paper establishes necessary and sufficient conditions for the Nagata's idealization and the amalgamated algebra to inherit these notions. Our results allow us to construct original examples of rings satisfying the above-mentioned properties.

ON PSEUDO 2-PRIME IDEALS AND ALMOST VALUATION DOMAINS

  • Koc, Suat
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.897-908
    • /
    • 2021
  • In this paper, we introduce the notion of pseudo 2-prime ideals in commutative rings. Let R be a commutative ring with a nonzero identity. A proper ideal P of R is said to be a pseudo 2-prime ideal if whenever xy ∈ P for some x, y ∈ R, then x2n ∈ Pn or y2n ∈ Pn for some n ∈ ℕ. Various examples and properties of pseudo 2-prime ideals are given. We also characterize pseudo 2-prime ideals of PID's and von Neumann regular rings. Finally, we use pseudo 2-prime ideals to characterize almost valuation domains (AV-domains).