Acknowledgement
The author would like to thank the referees for careful reading and valuable suggestions to improve the paper.
References
- D. D. Anderson, S. Chun, and J. R. Juett, Module-theoretic generalization of commutative von Neumann regular rings, Comm. Algebra 47 (2019), no. 11, 4713-4728. https://doi.org/10.1080/00927872.2019.1593427
- D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
- D. D. Anderson and M. Zafrullah, Almost B'ezout domains, J. Algebra 142 (1991), no. 2, 285-309. https://doi.org/10.1016/0021-8693(91)90309-V
- M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, MA, 1969.
- A. Ayache and D. E. Dobbs, Strongly divided pairs of integral domains, in Advances in commutative algebra, 63-92, Trends Math, Birkhauser/Springer, Singapore, 2019. https://doi.org/10.1007/978-981-13-7028-1_4
- A. Badawi, On divided commutative rings, Comm. Algebra 27 (1999), no. 3, 1465-1474. https://doi.org/10.1080/00927879908826507
- A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 417-429. https://doi.org/10.1017/S0004972700039344
- A. Badawi and D. E. Dobbs, On locally divided rings and going-down rings, Comm. Algebra 29 (2001), no. 7, 2805-2825. https://doi.org/10.1081/AGB-100104988
- C. Beddani and W. Messirdi, 2-prime ideals and their applications, J. Algebra Appl. 15 (2016), no. 3, 1650051, 11 pp. https://doi.org/10.1142/S0219498816500511
- A. Badawi, U. Tekir, and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc. 51 (2014), no. 4, 1163-1173. https://doi.org/10.4134/BKMS.2014.51.4.1163
- S. C eken Gezen, On M-coidempotent elements and fully coidempotent modules, Comm. Algebra 48 (2020), no. 11, 4638-4646. https://doi.org/10.1080/00927872.2020.1768266
- D. E. Dobbs, Divided rings and going-down, Pacific J. Math. 67 (1976), no. 2, 353-363. http://projecteuclid.org/euclid.pjm/1102817497 https://doi.org/10.2140/pjm.1976.67.353
- D. E. Dobbs, A. El Khalfi, and N. Mahdou, Trivial extensions satisfying certain valuation-like properties, Comm. Algebra 47 (2019), no. 5, 2060-2077. https://doi.org/10.1080/00927872.2018.1527926
- L. Fuchs, On quasi-primary ideals, Acta Univ. Szeged. Sect. Sci. Math. 11 (1947), 174-183.
- J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
- R. Jahani-Nezhad and F. Khoshayand, Almost valuation rings, Bull. Iranian Math. Soc. 43 (2017), no. 3, 807-816.
- C. Jayaram and Tekir, von Neumann regular modules, Comm. Algebra 46 (2018), no. 5, 2205-2217. https://doi.org/10.1080/00927872.2017.1372460
- S. Koc, U. Tekir, and G. Ulucak, On strongly quasi primary ideals, Bull. Korean Math. Soc. 56 (2019), no. 3, 729-743. https://doi.org/10.4134/BKMS.b180522
- Max. D. Larsen and P. J. McCarthy, Multiplicative Theory of Ideals, Academic Press, New York, 1971.
- N. Mahdou, A. Mimouni, and M. A. S. Moutui, On almost valuation and almost Bezout rings, Comm. Algebra 43 (2015), no. 1, 297-308. https://doi.org/10.1080/00927872.2014.897586
- R. Nikandish, M. J. Nikmehr, and A. Yassine, More on the 2-prime ideals of commutative rings, Bull. Korean Math. Soc. 57 (2020), no. 1, 17-126.
- U. Tekir, G. Ulucak, and S. Koc, On divided modules, Iran. J. Sci. Technol. Trans. A Sci. 44 (2020), no. 1, 265-272. https://doi.org/10.1007/s40995-020-00827-1
- J. von Neumann, On regular rings, Proceedings of the National Academy of Sci. 22 (1936), no. 12, 707-713. https://doi.org/10.1073/pnas.22.12.707