DOI QR코드

DOI QR Code

ON PSEUDO 2-PRIME IDEALS AND ALMOST VALUATION DOMAINS

  • Koc, Suat (Department of Mathematics Marmara University)
  • Received : 2020.07.17
  • Accepted : 2021.01.15
  • Published : 2021.07.31

Abstract

In this paper, we introduce the notion of pseudo 2-prime ideals in commutative rings. Let R be a commutative ring with a nonzero identity. A proper ideal P of R is said to be a pseudo 2-prime ideal if whenever xy ∈ P for some x, y ∈ R, then x2n ∈ Pn or y2n ∈ Pn for some n ∈ ℕ. Various examples and properties of pseudo 2-prime ideals are given. We also characterize pseudo 2-prime ideals of PID's and von Neumann regular rings. Finally, we use pseudo 2-prime ideals to characterize almost valuation domains (AV-domains).

Keywords

Acknowledgement

The author would like to thank the referees for careful reading and valuable suggestions to improve the paper.

References

  1. D. D. Anderson, S. Chun, and J. R. Juett, Module-theoretic generalization of commutative von Neumann regular rings, Comm. Algebra 47 (2019), no. 11, 4713-4728. https://doi.org/10.1080/00927872.2019.1593427
  2. D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
  3. D. D. Anderson and M. Zafrullah, Almost B'ezout domains, J. Algebra 142 (1991), no. 2, 285-309. https://doi.org/10.1016/0021-8693(91)90309-V
  4. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, MA, 1969.
  5. A. Ayache and D. E. Dobbs, Strongly divided pairs of integral domains, in Advances in commutative algebra, 63-92, Trends Math, Birkhauser/Springer, Singapore, 2019. https://doi.org/10.1007/978-981-13-7028-1_4
  6. A. Badawi, On divided commutative rings, Comm. Algebra 27 (1999), no. 3, 1465-1474. https://doi.org/10.1080/00927879908826507
  7. A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 417-429. https://doi.org/10.1017/S0004972700039344
  8. A. Badawi and D. E. Dobbs, On locally divided rings and going-down rings, Comm. Algebra 29 (2001), no. 7, 2805-2825. https://doi.org/10.1081/AGB-100104988
  9. C. Beddani and W. Messirdi, 2-prime ideals and their applications, J. Algebra Appl. 15 (2016), no. 3, 1650051, 11 pp. https://doi.org/10.1142/S0219498816500511
  10. A. Badawi, U. Tekir, and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc. 51 (2014), no. 4, 1163-1173. https://doi.org/10.4134/BKMS.2014.51.4.1163
  11. S. C eken Gezen, On M-coidempotent elements and fully coidempotent modules, Comm. Algebra 48 (2020), no. 11, 4638-4646. https://doi.org/10.1080/00927872.2020.1768266
  12. D. E. Dobbs, Divided rings and going-down, Pacific J. Math. 67 (1976), no. 2, 353-363. http://projecteuclid.org/euclid.pjm/1102817497 https://doi.org/10.2140/pjm.1976.67.353
  13. D. E. Dobbs, A. El Khalfi, and N. Mahdou, Trivial extensions satisfying certain valuation-like properties, Comm. Algebra 47 (2019), no. 5, 2060-2077. https://doi.org/10.1080/00927872.2018.1527926
  14. L. Fuchs, On quasi-primary ideals, Acta Univ. Szeged. Sect. Sci. Math. 11 (1947), 174-183.
  15. J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  16. R. Jahani-Nezhad and F. Khoshayand, Almost valuation rings, Bull. Iranian Math. Soc. 43 (2017), no. 3, 807-816.
  17. C. Jayaram and Tekir, von Neumann regular modules, Comm. Algebra 46 (2018), no. 5, 2205-2217. https://doi.org/10.1080/00927872.2017.1372460
  18. S. Koc, U. Tekir, and G. Ulucak, On strongly quasi primary ideals, Bull. Korean Math. Soc. 56 (2019), no. 3, 729-743. https://doi.org/10.4134/BKMS.b180522
  19. Max. D. Larsen and P. J. McCarthy, Multiplicative Theory of Ideals, Academic Press, New York, 1971.
  20. N. Mahdou, A. Mimouni, and M. A. S. Moutui, On almost valuation and almost Bezout rings, Comm. Algebra 43 (2015), no. 1, 297-308. https://doi.org/10.1080/00927872.2014.897586
  21. R. Nikandish, M. J. Nikmehr, and A. Yassine, More on the 2-prime ideals of commutative rings, Bull. Korean Math. Soc. 57 (2020), no. 1, 17-126.
  22. U. Tekir, G. Ulucak, and S. Koc, On divided modules, Iran. J. Sci. Technol. Trans. A Sci. 44 (2020), no. 1, 265-272. https://doi.org/10.1007/s40995-020-00827-1
  23. J. von Neumann, On regular rings, Proceedings of the National Academy of Sci. 22 (1936), no. 12, 707-713. https://doi.org/10.1073/pnas.22.12.707