• Title/Summary/Keyword: almost normal

Search Result 948, Processing Time 0.025 seconds

ON 3-DIMENSIONAL NORMAL ALMOST CONTACT METRIC MANIFOLDS SATISFYING CERTAIN CURVATURE CONDITIONS

  • De, Uday Chand;Mondal, Abul Kalam
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.265-275
    • /
    • 2009
  • The object of the present paper is to study 3-dimensional normal almost contact metric manifolds satisfying certain curvature conditions. Among others it is proved that a parallel symmetric (0, 2) tensor field in a 3-dimensional non-cosympletic normal almost contact metric manifold is a constant multiple of the associated metric tensor and there does not exist a non-zero parallel 2-form. Also we obtain some equivalent conditions on a 3-dimensional normal almost contact metric manifold and we prove that if a 3-dimensional normal almost contact metric manifold which is not a ${\beta}$-Sasakian manifold satisfies cyclic parallel Ricci tensor, then the manifold is a manifold of constant curvature. Finally we prove the existence of such a manifold by a concrete example.

ON REDUCTION OF K-ALMOST NORMAL AND K-ALMOST CONJUGATE NORMAL MATRICES TO A BLOCK TRIDIAGONAL FORM

  • ASIL, K. NIAZI;KAMALVAND, M. GHASEMI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.267-282
    • /
    • 2019
  • This paper examines how one can build a block tridiagonal structure for k-almost normal matrices and also for k-almost conjugate normal matrices. We shall see that these representations are created by unitary similarity and unitary congruance transformations, respectively. It shall be proven that the orders of diagonal blocks are 1, k + 2, 2k + 3, ${\ldots}$, in both cases. Then these block tridiagonal structures shall be reviewed for the cases where the mentioned matrices satisfy in a second-degree polynomial. Finally, for these processes, algorithms are presented.

SOME CLASSES OF 3-DIMENSIONAL NORMAL ALMOST PARACONTACT METRIC MANIFOLDS

  • ERKEN, I. KUPELI
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.457-468
    • /
    • 2015
  • The aim of present paper is to investigate 3-dimensional ${\xi}$-projectively flt and $\tilde{\varphi}$-projectively flt normal almost paracontact metric manifolds. As a first step, we proved that if the 3-dimensional normal almost paracontact metric manifold is ${\xi}$-projectively flt then ${\Delta}{\beta}=0$. If additionally ${\beta}$ is constant then the manifold is ${\beta}$-para-Sasakian. Later, we proved that a 3-dimensional normal almost paracontact metric manifold is $\tilde{\varphi}$-projectively flt if and only if it is an Einstein manifold for ${\alpha},{\beta}=const$. Finally, we constructed an example to illustrate the results obtained in previous sections.

PSEUDO-HERMITIAN MAGNETIC CURVES IN NORMAL ALMOST CONTACT METRIC 3-MANIFOLDS

  • Lee, Ji-Eun
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1269-1281
    • /
    • 2020
  • In this article, we show that a pseudo-Hermitian magnetic curve in a normal almost contact metric 3-manifold equipped with the canonical affine connection ${\hat{\nabla}}^t$ is a slant helix with pseudo-Hermitian curvature ${\hat{\kappa}}={\mid}q{\mid}\;sin\;{\theta}$ and pseudo-Hermitian torsion ${\hat{\tau}}=q\;cos\;{\theta}$. Moreover, we prove that every pseudo-Hermitian magnetic curve in normal almost contact metric 3-manifolds except quasi-Sasakian 3-manifolds is a slant helix as a Riemannian geometric sense. On the other hand we will show that a pseudo-Hermitian magnetic curve γ in a quasi-Sasakian 3-manifold M is a slant curve with curvature κ = |(t - α) cos θ + q| sin θ and torsion τ = α + {(t - α) cos θ + q} cos θ. These curves are not helices, in general. Note that if the ambient space M is an α-Sasakian 3-manifold, then γ is a slant helix.

NOTE ON NORMAL EMBEDDING

  • Yi, Seung-Hun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.289-297
    • /
    • 2002
  • It was shown by L. Polterovich ([3]) that if L is a totally real submanifold of a symplectic manifold $(M,\omega)$ and L is parallelizable then L is normal. So we try to find an answer to the question of whether there is a compatible almost complex structure J on the symplectic vector bundle $TM$\mid$_{L}$ such that $TL{\cap}JTL=0$ assuming L is normal and parallelizable. Although we could not reach an answer, we observed that the claim holds at the vector space level. And related to the question, we showed that for a symplectic vector bundle $(M,\omega)$ of rank 2n and $E=E_1{\bigoplus}E_2$, where $E=E_1,E_2$are Lagrangian subbundles of E, there is an almost complex structure J on E compatible with ${\omega}$ and $JE_1=E_2$. And finally we provide a necessary and sufficient condition for a given embedding into a symplectic manifold to be normal.

A WEAK COMMON FIXED POINT THEOREM IN NORMED ALMOST LINEAR SPACES

  • Lee, Sang-Han
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.573-581
    • /
    • 1997
  • In this paper we prove a weak common fixed point theo-rem in a normed almost linear space which is different from the result of S. P. Singh and B.A. Meade [9]. However for a Banach X our theorem is equal to the result of S. P. Singh and B. A. Meade.