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1. Introduction

After Booles axiomatization of two valued propositional calculus as a Boolean
algebra, a number of generalizations both ring theoretically and lattice theoret-
ically have come into being. The concept of an Almost Distributive Lattice
(ADL) was introduced by Swamy and Rao [7] as a common abstraction of many
existing ring theoretic generalizations of a Boolean algebra on one hand and
the class of distributive lattices on the other. In that paper, the concept of an
ideal in an ADL was introduced analogous to that in a distributive lattice and
it was observed that the set PI(R) of all principal ideals of R forms a distribu-
tive lattice. This enables us to extend many existing concepts from the class of
distributive lattices to the class of ADLs. Swamy, G.C. Rao and G.N. Rao intro-
duced the concept of Stone ADL and characterized it in terms of its ideals. In [6],
Sambasiva Rao and G.C. Rao introduced σ−ideals in an ADL and proved their
properties, in [5], G.C. Rao and Ravi kumar introduced the concept of normal
ADL and studied its properties extensively. In [1], Al-Ezeh introduced SpecL
can be endowed with two topologies, the spectral topology and D−topology and
he proved that two topologies coincide on SpecL, MaxL and MinL iff L is a
Boolean, Stonian and Normal lattice respectively. In this paper, the concept of
D−topology introduced on SpecR, where SpecR is the set of all prime ideals of
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an ADL and studied the relationship between σ−ideals in an ADL and D−open
subsets of SpecR. Characterized those ADLs for which topologies coincide on
SpecR, MaxR and MinspecR, where MaxR and MinspecR are the set of all
maximal ideals and minimal prime ideals of an ADL respectively.

2. Preliminaries

Definition 2.1 ([7]). An Almost Distributive Lattice with zero or simply ADL
is an algebra (R,∨,∧, 0) of type (2, 2, 0) satisfying

1. (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)
2. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
3. (x ∨ y) ∧ y = y
4. (x ∨ y) ∧ x = x
5. x ∨ (x ∧ y) = x
6. 0 ∧ x = 0
7. x ∨ 0 = x, for all x, y, z ∈ R.

Every non-empty set X can be regarded as an ADL as follows. Let x0 ∈ X.
Define the binary operations ∨,∧ on X by

x ∨ y

{
x if x ̸= x0

y if x = x0
x ∧ y

{
y if x ̸= x0

x0 if x = x0.

Then (X,∨,∧, x0) is an ADL (where x0 is the zero) and is called a discrete ADL.
If (R,∨,∧, 0) is an ADL, for any a, b ∈ R, define a ≤ b if and only if a = a ∧ b
(or equivalently, a ∨ b = b), then ≤ is a partial ordering on R.

Theorem 2.2 ([7]). If (R,∨,∧, 0) is an ADL, for any a, b, c ∈ R, we have the
following:

1). a ∨ b = a ⇔ a ∧ b = b
2). a ∨ b = b ⇔ a ∧ b = a
3). ∧ is associative in R
4). a ∧ b ∧ c = b ∧ a ∧ c
5). (a ∨ b) ∧ c = (b ∨ a) ∧ c
6). a ∧ b = 0 ⇔ b ∧ a = 0
7). a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
8). a ∧ (a ∨ b) = a, (a ∧ b) ∨ b = b and a ∨ (b ∧ a) = a
9). a ≤ a ∨ b and a ∧ b ≤ b
10). a ∧ a = a and a ∨ a = a
11). 0 ∨ a = a and a ∧ 0 = 0
12). If a ≤ c, b ≤ c then a ∧ b = b ∧ a and a ∨ b = b ∨ a
13). a ∨ b = (a ∨ b) ∨ a.

It can be observed that an ADL R satisfies almost all the properties of a
distributive lattice except the right distributivity of ∨ over ∧, commutativity
of ∨, commutativity of ∧. Any one of these properties make an ADL R a
distributive lattice. That is
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Theorem 2.3 ([7]). Let (R,∨,∧, 0) be an ADL with 0. Then the following are
equivalent:

1). (R,∨,∧, 0) is a distributive lattice
2). a ∨ b = b ∨ a, for all a, b ∈ R
3). a ∧ b = b ∧ a, for all a, b ∈ R
4). (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c), for all a, b, c ∈ R.

As usual, an element m ∈ R is called maximal if it is a maximal element in
the partially ordered set (R,≤). That is, for any a ∈ R, m ≤ a ⇒ m = a.

Theorem 2.4 ([7]). Let R be an ADL and m ∈ R. Then the following are
equivalent:

1). m is maximal with respect to ≤
2). m ∨ a = m, for all a ∈ R
3). m ∧ a = a, for all a ∈ R
4). a ∨m is maximal, for all a ∈ R.

As in distributive lattices [2, 3], a non-empty sub set I of an ADL R is called
an ideal of R if a ∨ b ∈ I and a ∧ x ∈ I for any a, b ∈ I and x ∈ R. Also, a
non-empty subset F of R is said to be a filter of R if a ∧ b ∈ F and x ∨ a ∈ F
for a, b ∈ F and x ∈ R.

The set I(R) of all ideals of R is a bounded distributive lattice with least
element {0} and greatest element R under set inclusion in which, for any I, J ∈
I(R), I ∩ J is the infimum of I and J while the supremum is given by I ∨ J :=
{a ∨ b | a ∈ I, b ∈ J}. A proper ideal P of R is called a prime ideal if, for
any x, y ∈ R, x ∧ y ∈ P ⇒ x ∈ P or y ∈ P . A proper ideal M of R is said
to be maximal if it is not properly contained in any proper ideal of R. It can
be observed that every maximal ideal of R is a prime ideal. Every proper ideal
of R is contained in a maximal ideal. For any subset S of R the smallest ideal

containing S is given by (S] := {(
n∨

i=1

si) ∧ x | si ∈ S, x ∈ R and n ∈ N}.

If S = {s}, we write (s] instead of (S]. Similarly, for any S ⊆ R, [S) :=

{x ∨ (
n∧

i=1

si) | si ∈ S, x ∈ R and n ∈ N}. If S = {s}, we write [s) instead of [S).

Theorem 2.5 ([7]). For any x, y in R the following are equivalent:
1). (x] ⊆ (y]
2). y ∧ x = x
3). y ∨ x = y
4). [y) ⊆ [x).

For any x, y ∈ R, it can be verified that (x]∨(y] = (x∨y] and (x]∧(y] = (x∧y].
Hence the set PI(R) of all principal ideals of R is a sublattice of the distributive
lattice I(R) of ideals of R.
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3. Characterization of certain classes of ADLs

In this section, the concept of D−topology on SpecR introduced. We char-
acterized Complemented ADL, normal ADL, Stone ADL in terms of σ−ideals
topologically. we recall definition and important results.

Definition 3.1 ([5]). For any non-empty subset S of R, write (S]∗ = {a ∈
R | a ∧ s = 0, for all s ∈ S}. Then (S]∗ is an ideal of R and is called the
annihilator of S in R. If S = {s}, then we write (s]∗ for ({s}]∗.

Definition 3.2 ([6]). Let R be an ADL. For any I of R, define σ(I) = {x ∈
R | (x]∗ ∨ I = R}.

Lemma 3.3 ([6]). For any ideal I of an ADL R, σ(I) is an ideal of R.

Lemma 3.4 ([6]). For any two ideals I, J of an ADL R, we have the following:
(1). σ(I) ⊆ I
(2). I ⊆ J implies σ(I) ⊆ σ(J)
(3). σ(I ∩ J) = σ(I) ∩ σ(J)
(4). σ(I) ∨ σ(J) ⊆ σ(I ∨ J).

Definition 3.5 ([6]). Let R be an ADL. An ideal I of R is said to be an σ−ideal,
if σ(I) = I.

Example 3.6 ([6]). Let A = {0, a} and B = {0, b1, b2} be two discrete ADLs.
Write R = A×B = {(0, 0), (0, b1), (0, b2), (a, 0), (a, b1), (a, b2)}. Then (R,∨,∧, 0′)
is an ADL under point-wise operations, where the zero element of R is 0′ = (0, 0).
Consider the subset I = {(0, 0), (a, 0)} of R. Then clearly I is an ideal of R. Now
σ(I) = {x ∈ R | (x]∗ ∨ I = R} = {(0, 0), (a, 0)} = I. Therefore I is an σ−ideal
of R.

Let R be a non-trivial ADL. Let SpecR denote the set of all prime ideals of R.
For any A ⊆ R, let D(A) = {P ∈ SpecR | A * P} and for any a ∈ R, D(a) =
{P ∈ SpecR | a /∈ P}. Then we have the following;

Lemma 3.7. Let R be an ADL with maximal elements. Then for any a, b ∈ R,
the following hold.

(1).
∪

x∈R

D(x) = SpecR

(2). D(a) ∩D(b) = D(a ∧ b)
(3). D(a) ∪D(b) = D(a ∨ b).

From the above lemma we can immediately say that the collection {D(a) | a ∈
R} forms a base for a topology on SpecR. The topology generated by this base
is precisely {D(A) | A ⊆ R} and is called the hull-kernel topology on SpecR.

Theorem 3.8. Let R be an ADL with maximal elements. For any a ∈ R, the
following hold.

1). D(a) = ∅ if and only if a = 0
2). D(a) = SpecR if and only if a is a maximal element.
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Now we give the following definition.

Definition 3.9. Let R be an ADL. A subset X of SpecR is called S−stable if
for any P,Q ∈ SpecR, whenever P ⊆ Q and P ∈ X, Q ∈ X.

Lemma 3.10. Let R be an ADL with maximal elements and I, an ideal of R.
Then a spectrally open set D(I) is S−stable if and only if I is an σ−ideal of an
ADL R.

Proof. Assume that I is an σ−ideal of R. Let P,Q ∈ SpecR such that P ⊆ Q
and P ∈ D(I). Then I * P. We prove that Q ∈ D(I). Since I * P, choose an
element x ∈ I such that x /∈ P. Since I is an σ−ideal of R, there exist x1 ∈ I and
y ∈ (x]∗ such that x1 ∨ y is a maximal element in R. Then y ∈ P and P ⊆ Q.
That implies x1 /∈ Q (since x1 ∨ y is maximal and y ∈ Q). Therefore I * Q
and hence Q ∈ D(I). Thus D(I) is S−stable. Conversely, assume that D(I) is
S−stable. We prove that I is an σ−ideal of R (i.e. σ(I) = I). Suppose I is not
an σ−ideal of R. Then there exists an element x ∈ I such that I ∨ (x]∗ ̸= R.
Since I ∨ (x]∗ is a proper ideal of R, there exists a maximal ideal M of R
such that I ∨ (x]∗ ⊆ M. Then I ⊆ M and (x]∗ ⊆ M. Now consider the set
F := {J | J is an ideal of R, x /∈ J and J ⊆ M}. Clearly (x]∗ ∈ F. Then F ̸= ∅
and hence (F, ⊆) is a poset in which every chain has an upper bound. By the
Zorn’s lemma, F has a maximal element P1 say. That is x /∈ P1 and P1 ⊆ M.
Since x ∈ I, we have P1 ∈ D(I). Since D(I) is S−stable we get M ∈ D(I). Then
I * M, which is a contradiction. Therefore I is an σ−ideal of R. �

Now, we state the following result whose proof is straightforward.

Theorem 3.11. Let R be an ADL with maximal elements. Then the mapping
I −→ D(I) is bijection from the set of all σ−ideals of R to the set of all D−open
subsets of SpecR.

Now we give the following definition.

Definition 3.12. Let R be an ADL with maximal elements. An element x of
an ADL R is said to be complemented if there exists an element y ∈ R such that
x ∧ y = 0 and x ∨ y maximal.

Lemma 3.13. Let R be an ADL with maximal elements. Then D(I) is spectrally
clopen(both open and closed) if and only if D(I) = D(x), for some complemented
element x in R.

Proof. Assume that x is a complemented element in R. Then there exists an
element x

′ ∈ R such that x ∧ x′ = 0 and x ∨ x′ is a maximal element. Now
D(x) ∩ D(x′) = D(x ∧ x′) = ∅ and D(x) ∪ D(x′) = D(x ∨ x′) = SpecR (since
x∧x′ = 0 and x∨x′ is maximal). Therefore D(x) is clopen. Conversely, assume
that D(I) is clopen. Then SpecR\D(I) is also an open set. Then there exists an
σ−ideal J of R such thatD(J) = SpecR\D(I). NowD(I)∩D(J) = D(I∩J) = ∅.
That implies I ∩ J = {0}. Also now, SpecR = D(I) ∪D(J) = D(I ∨ J). That
implies I ∨ J = R. Let m be any maximal element in R. So that a ∨ b = m, for
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some a ∈ I, b ∈ J and a∧ b = 0 (since I ∩ J = {0}). We prove that I = (a]. Let
x ∈ I. Now x = x ∧ (a ∨ b) = (x ∧ a) ∨ (x ∧ b) = x ∧ a ( since x ∧ b = 0). Then
x ∈ (a]. Therefore (a] = I and hence D(I) = D((a]). Thus a is a complemented
element in R. �

Definition 3.14. An ADL R is said to be complemented if every element of R
is complemented.

Theorem 3.15. Let R be an ADL with maximal elements. Then the spectral
topology and D−topology coincide on SpecR if and only if R is a complemented
ADL.

Proof. Let τ and τD be spectral topology and D−topology on SpecR. Assume
that τ = τD. Let x ∈ R. We known that D((x]) is D−open. Then the ideal (x]
generated by x is an σ−ideal of R. That implies (x]∗ ∨ (x] = R. Let m be any
maximal element of R. Then there exists an element t ∈ (x]∗ such that t ∨ x is
a maximal element. Therefore x is complemented. Hence R is a complemented
ADL. Conversely, assume that R is a complemented ADL. We prove that τ = τD.
It is enough to prove that every ideal of R is an σ−ideal. Consider an ideal I
of R. Let x ∈ I. Then there exists an element x′ ∈ R such that x ∧ x′ = 0 and
x ∨ x′ is maximal. That implies (x]∗ ∨ I = R. Therefore x ∈ σ(I) and hence
I ⊆ σ(I). Thus I = σ(I). �

The following two definitions taken from [8] and [9].

Definition 3.16. Let R be an ADL. Then a unary operation a 7−→ a⊥ on R
is called a pseudo-complementation on R if, for any a, b ∈ R, it satisfies the
following conditions:

(P1). a ∧ b = 0 =⇒ a⊥ ∧ b = b
(P2). a ∧ a⊥ = 0
(P3). (a ∨ b)⊥ = a⊥ ∧ b⊥.

Theorem 3.17. Let R be an ADL with maximal elements and ⊥ a pseudo-
complementation on L. Then, for any a, b ∈ R, we have the following:

1) 0⊥ is a maximal element
2) If a is a maximal element then a⊥ = 0
3) 0⊥⊥ = 0
4) 0⊥ ∧ a = a
5) a⊥⊥ ∧ a = a
6) a⊥⊥⊥ = a⊥

7) a ≤ b ⇒ b⊥ ≤ a⊥

8) a⊥ ∧ b⊥ = b⊥ ∧ a⊥

9) (a ∧ b)⊥⊥ = a⊥⊥ ∧ b⊥⊥

10) a⊥ ∧ b = (a ∧ b)⊥ ∧ b⊥.

Definition 3.18. Let R be an ADL with a pseudo-complementation ⊥. Then
R is called a stone ADL if, for any x ∈ R, x⊥ ∨ x⊥⊥ = 0⊥.
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Theorem 3.19 ([9]). Let R be an ADL with maximal elements. Then R is
stone ADL if and only if for any x ∈ R, (x]∗ ∨ (x]∗∗ = R.

MinspecR denote the set of all minimal prime ideals of an ADL R. For any
x ∈ R, write DM (x) = D(x)∩MinspecR. Now we prove the following theorem.

Theorem 3.20. Let R be an ADL with maximal elements. Then R is stone if
and only if the spectral topology and the D−topology coincides on MinspecR.

Proof. Assume that R is a stone ADL. Let x ∈ R. We prove that DM (x) =
D(x) ∩ MinspecR is S−stable. Since x ∈ R and R is stone (x]∗ = (y], for
some complemented element y in R. Since y ∈ (x]∗, there exists z ∈ (x]∗∗ such
that y ∨ z is maximal and also y ∧ z = 0. Let P ∈ DM (x). Then x /∈ P.
So that y ∈ P (since x ∧ y = 0)and hence z /∈ P (since y ∨ z is maximal).
That implies P ∈ DM (z). Therefore DM (x) ⊆ DM (z). Let P ∈ DM (z). Then
z /∈ P. That implies y ∈ P. Since P is a minimal prime ideal of R, we get
P ∈ DM (x). Therefore DM (z) ⊆ DM (x) and hence DM (x) = DM (z). Thus
DM (x) is D−open (since DM (z) is D−open). Finally, we prove that D(z) is
S−stable. Let P,Q ∈ SpecR such that P ∈ D(z) and P ⊆ Q. Then z /∈ P and
hence y ∈ P. That implies y ∈ Q. So that z /∈ Q. Therefore Q ∈ D(z). Hence
D(z) is S−stable and D(z) is open in specR. DM (z) is open in MinspecR. Thus
τ = τD onMinspecR. Conversely, assume that τ = τD onMinspecR. Let x ∈ R.
We prove that R is a Stone ADL. It is enough to show that (x]∗ ∨ (x]∗∗ = R.
Since τ = τD on MinspecR, DM (x) is D−open. By the lemma 3.10, there exists
an σ−ideal I of R such that DM (x) = DM (I). That implies (x]∗ = I∗. We prove
that (x]∗ ∨ I = R and (x]∗ ∩ I = {0}. Suppose (x]∗ ∨ I ̸= R. Then there exists a
maximal ideal M of R such that (x]∗ ∨ I ⊆ M. So that ((x]∗ ∨ I)∩ (R \M) = ∅.
Then there exists Q ∈ MinspecR such that (x]∗ ∨ I ⊆ M, Q ⊆ M. So that
(x]∗ ⊆ M, I ⊆ M and Q ⊆ M. That implies x /∈ Q and hence I ( Q which is a
contradiction. Therefore (x]∗∨I = R. Let a ∈ (x]∗∩I. Then a ∈ (x]∗ and a ∈ I.
so that a∧a = 0 and hence a = 0, (since (x]∗ = I∗). Therefore (x]∗∩I = {0}. �

We observe that, if R has maximal elements, then the Zorn’s lemma helps
us in proving the existence of maximal ideals. However, if R has no maximal
elements, then there is no such guarantee. For, consider the following.

Example 3.21. If R is a chain with least element which is not bounded above,
then R has no maximal ideals. For, if I is any proper ideal of R and a ∈ R \ I,
then I ( (a] ( R and hence I is not maximal.

For this reason, we consider in this section only ADLs with maximal elements.
Let MaxR denote the space of all maximal ideals of R. Then MaxR is a subspace
of SpecR. This subspace topology on MaxR is given by {DM (X)|X ⊆ R}, where
DM (X) = {M ∈ MaxR | X * M} = D(X)∩MaxR. For this subspace topology
on MaxR, {DM (x)|x ∈ R} forms a base where for any x ∈ R, DM (x) =
DM ({x}). Here after words we treat MaxR is a topological space with this
hull-kernel topology. We recall the definition of normal ADL in [5].
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Definition 3.22. An ADL R is said to be normal if every prime ideal of R
contained in unique maximal ideal of R.

Theorem 3.23. Let R be an ADL with maximal elements. Then the spectral
topology and the D−topology coincides on MaxR if and only R is a normal
ADL.

Proof. Assume that R be a normal ADL. Let x ∈ R. Consider DM (x) and let
V = {P ∈ SpecR | MP ∈ DM (x)} = {P ∈ SpecR | x /∈ MP }. We prove that
DM (x) is a D−open set in MaxR. Let P1, P2 ∈ SpecR such that P1 ⊆ P2 and
P1 ∈ V. Since P1 and P2 are proper ideals in R, there exist maximal ideals MP1

and MP2 in R such that P1 ⊆ MP1 and P2 ⊆ MP2 . Since P1 ⊆ P2, we have
P1 ⊆ MP2 . By normality of R, we get MP1 = MP2 . That implies MP2 ∈ DM (x).
So that P2 ∈ V. Therefore DM (x) is a D−open set in MaxR (since V ∩MaxR =
DM (x)). Hence τ = τD on MaxR. Conversely, assume that τ = τD on MaxR.
Let P be a prime ideal of R. Suppose M1,M2 are two disjoint maximal ideals
of R such that P ⊆ M1 and P ⊆ M2. Since M1 ̸= M2, choose a ∈ M1 such
that a /∈ M2. Then M1 /∈ DM (a) and M2 ∈ DM (a). Then DM (a) is D−open
in MaxR. Then there exists an σ−ideal I of R such that DM (a) = DM (I).
Since M2 ∈ DM (a), we get M2 ∈ DM (I). That implies P ∈ DM (I). Since D(I)
is S−stable and P ⊆ M1, we get M1 ∈ D(I). That implies I * M1. So that
M1 ∈ DM (a), which is a contradiction. M1 = M2. Hence R is normal. �

Acknowledgment

The authors wish to thank the referees for their very useful suggestions which
greatly improved the paper.

References

1. H. Al-Ezeh, Topological Characterization of Certain Classes of Lattices, Rend. Sem. Mat.
Univ. Padova,, 83 (1990), 13-18.

2. G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. XXV, Providence (1967),

U.S.A.
3. G. Gratzer, General Lattice Theory, Academic Press, New York, Sanfransisco (1978).
4. G.C. Rao and S. Ravi Kumar, Minimal prime ideals in an ADL, Int. J. Contemp. Sciences,

4 (2009), 475-484.

5. G.C. Rao and S. Ravi Kumar, Normal Almost Distributive Lattices, Southeast Asian Bul-
lettin of Mathematics, 32 (2008), 831-841.

6. G.C. Rao and M. Sambasiva Rao, σ−ideals in Almost Distributive Lattices, Asian-European
Journal of Mathematics, 05 (2012), 1250057 [10 pages].

7. U.M. Swamy and G.C. Rao, Almost Distributive Lattices, J. Aust. Math. Soc. (Series A),
31 (1981), 77-91.

8. U.M. Swamy, G.C. Rao and G. Nanaji Rao, Pseudo-complementeation on an Almost Dis-

tributive Lattice, Southeast Asian Bullettin of Mathematics, Springer-Verlag, 24 (2000),
95-104.

9. U.M. Swamy, G.C. Rao and G. Nanaji Rao, Stone Almost Distributive Lattices, Southeast
Asian Bullettin of Mathematics, Springer-Verlag, 27 (2003), 513-526.



Topological Characterization of Certain Classes of ADLs 325

Noorbhasha Rafi received M.Sc. from Andhra University and Ph.D from Andhra Uni-
versity. He is currently working as Assistant professor at Bapatla Engineering College since
2012. His research interests include Almost Distributive lattices, G-algebras.

Department of Mathematics, Bapatla Engineering College, Bapatla, Andhra Pradesh, India-
522 101.

e-mail: rafimaths@gmail.com

G.C. Rao received M.Sc. from Andhra University, and Ph.D. from Andhra University. He

is currently a professor at Andhra University His research interests are Almost Distributive
Lattices, C-algebras and Sheaf Theory.

Department of Mathematics, Andhra University, Visakhapatnam, Andhra Pradesh, India -
530003.
e-mail: gcraomaths@yahoo.co.in


