• Title/Summary/Keyword: almost linear functional

Search Result 26, Processing Time 0.028 seconds

A METRIC ON NORMED ALMOST LINEAR SPACES

  • Lee, Sang-Han;Jun, Kil-Woung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.379-388
    • /
    • 1999
  • In this paper, we introduce a semi-metric on a normed almost linear space X via functional. And we prove that a normed almost linear space X is complete if and only if $V_X$ and $W_X$ are complete when X splits as X=$W_X$ + $V_X$. Also, we prove that the dual space $X^\ast$ of a normed almost linear space X is complete.

  • PDF

AUTOMATIC CONTINUITY OF ALMOST MULTIPLICATIVE LINEAR FUNCTIONALS ON FRÉCHET ALGEBRAS

  • Honary, Taher Ghasemi;Omidi, Mashaallah;Sanatpour, Amir Hossein
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.641-649
    • /
    • 2016
  • A linear functional T on a $Fr{\acute{e}}echet$ algebra (A, (pn)) is called almost multiplicative with respect to the sequence ($p_n$), if there exists ${\varepsilon}{\geq}0$ such that ${\mid}Tab-TaTb{\mid}{\leq}{\varepsilon}p_n(a)p_n(b)$ for all $n{\in}\mathbb{N}$ and for every $a,b{\in}A$. We show that an almost multiplicative linear functional on a $Fr{\acute{e}}echet$ algebra is either multiplicative or it is continuous, and hence every almost multiplicative linear functional on a functionally continuous $Fr{\acute{e}}echet$ algebra is continuous.

HOMOMORPHISMS BETWEEN POISSON BANACH ALGEBRAS AND POISSON BRACKETS

  • PARK, CHUN-GIL;WEE, HEE-JUNG
    • Honam Mathematical Journal
    • /
    • v.26 no.1
    • /
    • pp.61-75
    • /
    • 2004
  • It is shown that every almost linear mapping $h:{\mathcal{A}}{\rightarrow}{\mathcal{B}}$ of a unital Poisson Banach algebra ${\mathcal{A}}$ to a unital Poisson Banach algebra ${\mathcal{B}}$ is a Poisson algebra homomorphism when h(xy) = h(x)h(y) holds for all $x,y{\in}\;{\mathcal{A}}$, and that every almost linear almost multiplicative mapping $h:{\mathcal{A}}{\rightarrow}{\mathcal{B}}$ is a Poisson algebra homomorphism when h(qx) = qh(x) for all $x\;{\in}\;{\mathcal{A}}$. Here the number q is in the functional equation given in the almost linear almost multiplicative mapping. We prove that every almost Poisson bracket $B:{\mathcal{A}}\;{\times}\;{\mathcal{A}}\;{\rightarrow}\;{\mathcal{A}}$ on a Banach algebra ${\mathcal{A}}$ is a Poisson bracket when B(qx, z) = B(x, qz) = qB(x, z) for all $x,z{\in}\;{\mathcal{A}}$. Here the number q is in the functional equation given in the almost Poisson bracket.

  • PDF

REFLEXIVITY OF NORMED ALMOST LINEAR SPACES

  • Lee, Sang-Han
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.4
    • /
    • pp.855-866
    • /
    • 1995
  • We prove that if a nals X is reflexive, then $X = W_X + V_X$. We prove also that if an als X has a finite basis, then $X = W_X + V_X$ if and only if X is reflexive.

  • PDF

Poisson Banach Modules over a Poisson C*-Algebr

  • Park, Choon-Kil
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.529-543
    • /
    • 2008
  • It is shown that every almost linear mapping h : $A{\rightarrow}B$ of a unital PoissonC*-algebra A to a unital Poisson C*-algebra B is a Poisson C*-algebra homomorph when $h(2^nuy)\;=\;h(2^nu)h(y)$ or $h(3^nuy)\;=\;h(3^nu)h(y)$ for all $y\;\in\;A$, all unitary elements $u\;\in\;A$ and n = 0, 1, 2,$\codts$, and that every almost linear almost multiplicative mapping h : $A{\rightarrow}B$ is a Poisson C*-algebra homomorphism when h(2x) = 2h(x) or h(3x) = 3h(x for all $x\;\in\;A$. Here the numbers 2, 3 depend on the functional equations given in the almost linear mappings or in the almost linear almost multiplicative mappings. We prove the Cauchy-Rassias stability of Poisson C*-algebra homomorphisms in unital Poisson C*-algebras, and of homomorphisms in Poisson Banach modules over a unital Poisson C*-algebra.

A CHARACTERIZATION OF REFLEXIVITY OF NORMED ALMOST LINEAR SPACES

  • Im, Sung-Mo;Lee, Sang-Han
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.211-219
    • /
    • 1997
  • In [6] we proved that if a nals X is reflexive, then $X = W_X + V_X$ . In this paper we show that, for a split nals $X = W_X + V_X$, X is reflecxive if and only if $V_X$ and $W_X$ are reflcxive.

  • PDF

POSITIVE LINEAR OPERATORS IN C*-ALGEBRAS

  • Park, Choon-Kil;An, Jong-Su
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.1031-1040
    • /
    • 2009
  • It is shown that every almost positive linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a Banach *-algebra $\mathcal{A}$ to a Banach *-algebra $\mathcal{B}$ is a positive linear operator when h(rx) = rh(x) (r > 1) holds for all $x\in\mathcal{A}$, and that every almost linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a unital C*-algebra $\mathcal{A}$ to a unital C*-algebra $\mathcal{B}$ is a positive linear operator when h($2^nu*y$) = h($2^nu$)*h(y) holds for all unitaries $u\in \mathcal{A}$, all $y \in \mathcal{A}$, and all n = 0, 1, 2, ..., by using the Hyers-Ulam-Rassias stability of functional equations. Under a more weak condition than the condition as given above, we prove that every almost linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a unital C*-algebra $\mathcal{A}$ A to a unital C*-algebra $\mathcal{B}$ is a positive linear operator. It is applied to investigate states, center states and center-valued traces.

Almost derivations on the banach algebra $C^n$[0,1]

  • Jun, Kil-Woung;Park, Dal-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.359-366
    • /
    • 1996
  • A linear map T from a Banach algebra A into a Banach algebra B is almost multiplicative if $\left\$\mid$ T(fg) - T(f)T(g) \right\$\mid$ \leq \in\left\$\mid$ f \right\$\mid$\left\$\mid$ g \right\$\mid$(f,g \in A)$ for some small positive $\in$. B.E.Johnson [4,5] studied whether this implies that T is near a multiplicative map in the norm of operators from A into B. K. Jarosz [2,3] raised the conjecture : If T is an almost multiplicative functional on uniform algebra A, there is a linear and multiplicative functional F on A such that $\left\$\mid$ T - F \right\$\mid$ \leq \in', where \in' \to 0$ as $\in \to 0$. B. E. Johnson [4] gave an example of non-uniform commutative Banach algebra which does not have the property described in the above conjecture. He proved also that C(K) algebras and the disc algebra A(D) have this property [5]. We extend this property to a derivation on a Banach algebra.

  • PDF

HOMOMORPHISMS BETWEEN C*-ALGEBRAS ASSOCIATED WITH THE TRIF FUNCTIONAL EQUATION AND LINEAR DERIVATIONS ON C*-ALGEBRAS

  • Park, Chun-Gil;Hou, Jin-Chuan
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.461-477
    • /
    • 2004
  • It is shown that every almost linear mapping h : A\longrightarrowB of a unital $C^{*}$ -algebra A to a unital $C^{*}$ -algebra B is a homomorphism under some condition on multiplication, and that every almost linear continuous mapping h : A\longrightarrowB of a unital $C^{*}$ -algebra A of real rank zero to a unital $C^{*}$ -algebra B is a homomorphism under some condition on multiplication. Furthermore, we are going to prove the generalized Hyers-Ulam-Rassias stability of *-homomorphisms between unital $C^{*}$ -algebras, and of C-linear *-derivations on unital $C^{*}$ -algebras./ -algebras.