• Title/Summary/Keyword: almost generalized

Search Result 155, Processing Time 0.028 seconds

A Case of Pemphigus vulgaris with Generalized Pruritus (전신소양감을 동반한 심상성 천포창 치험 1례)

  • Lee, Sung-Eun;Yoon, Hwa-Jung;Ko, Woo-Shin
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.29 no.2
    • /
    • pp.112-122
    • /
    • 2016
  • Objectives : The purpose of this report is to know the effect of Korean medical treatments on pemphigus vulgaris with generalized pruritus. Methods : We treated a 44-years-old woman patient with pemphigus vulgaris on the whole body with Korean medicine. After Korean medical treatment for 17 weeks, we measured the extinction of blisters and decrease of pruritus. We recorded pictures of changes on symptoms. Results & Conclusions : The symptoms of pemphigus vulgaris were significantly improved. The blisters and itching were decreased and skin damages were almost recovered. Thus Korean medical treatments are effective on pemphigus vulgaris.

ON THE SEMI CONTINUOUS FUNCTIONS WITH THE OPEN PROPERTY

  • Kim, Seungwook
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.241-248
    • /
    • 2005
  • Some of the generalized continuous functions and their basic properties are introduced in concern with the cover theory. The open property of a function is a crucial tool for the survey of this area.

  • PDF

RICCI 𝜌-SOLITONS ON 3-DIMENSIONAL 𝜂-EINSTEIN ALMOST KENMOTSU MANIFOLDS

  • Azami, Shahroud;Fasihi-Ramandi, Ghodratallah
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.613-623
    • /
    • 2020
  • The notion of quasi-Einstein metric in theoretical physics and in relation with string theory is equivalent to the notion of Ricci soliton in differential geometry. Quasi-Einstein metrics or Ricci solitons serve also as solution to Ricci flow equation, which is an evolution equation for Riemannian metrics on a Riemannian manifold. Quasi-Einstein metrics are subject of great interest in both mathematics and theoretical physics. In this paper the notion of Ricci 𝜌-soliton as a generalization of Ricci soliton is defined. We are motivated by the Ricci-Bourguignon flow to define this concept. We show that if a 3-dimensional almost Kenmotsu Einstein manifold M is a 𝜌-soliton, then M is a Kenmotsu manifold of constant sectional curvature -1 and the 𝜌-soliton is expanding with λ = 2.

Application of Generalized Transmission Line Models to Mixed Ionic-Electronic Transport Phenomena

  • Ahn, Pyung-An;Shin, Eui-Chol;Kim, Gye-Rok;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.549-558
    • /
    • 2011
  • Application of a generalized equivalent circuit including the electrode condition for the Hebb-Wagner polarization in the frequency domain proposed by Jamnik and Maier can provide a consistent set of material parameters, such as the geometric capacitance, partial conductivities, chemical capacitance or diffusivity, as well as electrode characteristics. Generalization of the shunt capacitors for the chemical capacitance by the constant phase elements (CPEs) was applied to a model mixed conducting system, $Ag_2S$, with electron-blocking AgI electrodes and ion-blocking Pt electrodes. While little difference resulted for the electron-blocking cell with almost ideal Warburg behavior, severely non-ideal behavior in the case of Pt electrodes not only necessitates a generalized transmission line model with shunt CPEs but also requires modelling of the leakage in the cell approximately proportional to the cell conductance, which then leads to partial conductivity values consistent with the electron-blocking case. Chemical capacitance was found to be closer to the true material property in the electron-blocking cell while excessively high chemical capacitance without expected silver activity dependence resulted in the electron-blocking cell. A chemical storage effect at internal boundaries is suggested to explain the anomalies in the respective blocking configurations.

Diagnostic Study of Problems under Asymptotically Generalized Least Squares Estimation of Physical Health Model

  • Kim, Jung-Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.29 no.5
    • /
    • pp.1030-1041
    • /
    • 1999
  • This study examined those problems noticed under the Asymptotically Generalized Least Squares estimator in evaluating a structural model of physical health. The problems were highly correlated parameter estimates and high standard errors of some parameter estimates. Separate analyses of the endogenous part of the model and of the metric of a latent factor revealed a highly skewed and kurtotic measurement indicator as the focal point of the manifested problems. Since the sample sizes are far below that needed to produce adequate AGLS estimates in the given modeling conditions, the adequacy of the Maximum Likelihood estimator is further examined with the robust statistics and the bootstrap method. These methods demonstrated that the ML methods were unbiased and statistical decisions based upon the ML standard errors remained almost the same. Suggestions are made for future studies adopting structural equation modeling technique in terms of selecting of a reference indicator and adopting those statistics corrected for nonormality.

  • PDF

ON THE SPECIAL FINSLER METRIC

  • Lee, Nan-Y
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.457-464
    • /
    • 2003
  • Given a Riemannian manifold (M, $\alpha$) with an almost Hermitian structure f and a non-vanishing covariant vector field b, consider the generalized Randers metric $L\;=\;{\alpha}+{\beta}$, where $\beta$ is a special singular Riemannian metric defined by b and f. This metric L is called an (a, b, f)-metric. We compute the inverse and the determinant of the fundamental tensor ($g_{ij}$) of an (a, b, f)-metric. Then we determine the maximal domain D of $TM{\backslash}O$ for an (a, b, f)-manifold where a y-local Finsler structure L is defined. And then we show that any (a, b, f)-manifold is quasi-C-reducible and find a condition under which an (a, b, f)-manifold is C-reducible.

VOLUME MEAN OPERATOR AND DIFFERENTIATION RESULTS ASSOCIATED TO ROOT SYSTEMS

  • Rejeb, Chaabane
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1981-1990
    • /
    • 2017
  • Let R be a root system in $\mathbb{R}^d$ with Coxeter-Weyl group W and let k be a nonnegative multiplicity function on R. The generalized volume mean of a function $f{\in}L^1_{loc}(\mathbb{R}^d,m_k)$, with $m_k$ the measure given by $dmk(x):={\omega}_k(x)dx:=\prod_{{\alpha}{\in}R}{\mid}{\langle}{\alpha},x{\rangle}{\mid}^{k({\alpha})}dx$, is defined by: ${\forall}x{\in}\mathbb{R}^d$, ${\forall}r$ > 0, $M^r_B(f)(x):=\frac{1}{m_k[B(0,r)]}\int_{\mathbb{R}^d}f(y)h_k(r,x,y){\omega}_k(y)dy$, where $h_k(r,x,{\cdot})$ is a compactly supported nonnegative explicit measurable function depending on R and k. In this paper, we prove that for almost every $x{\in}\mathbb{R}^d$, $lim_{r{\rightarrow}0}M^r_B(f)(x)= f(x)$.