• Title/Summary/Keyword: alluvial bed

Search Result 47, Processing Time 0.027 seconds

Field Measurement and Analysis of Fluvial Sediment in the Cheongmi-Stream(I) - Hydraulic and Sediment Characteristics (청계천에서의 하천 유사 측정 및 분석(I) - 수리량 및 유사량 -)

  • 유권규;우효섭
    • Water for future
    • /
    • v.24 no.2
    • /
    • pp.71-79
    • /
    • 1991
  • Some selected hydraulic characteristics including the average velocitv, geometry of the channel cross-section, and water temperature, and sediment-characteristics including suspended sediment concentration , and the size distributions of suspended and bed-sediments were collected at two measuring stations in the Cheongmi-Stream during a flood period. The river bed investigated for this study is composed completely of sands, and it can be considered a typical alluvial channel. The major results obtained from the analysis of the date collected are as follows: 1) Only during floods, a substantial sediment transport occurs in the river; 2) The stage-discharge relations are changed frequently, especially for low flows; 3) The friction in the flow increases with an increase in the flow discharge; 4) Slits and clays are dominant in suspended sediments during normal flows, while sands are dominant during floods; 5) The vertical distributions of the flow velocity and suspended sediment concentration can be described, respectively, by Prandt1-von Karman's log-law and Rouse's exponential law. It is judged that the above results are commonly adapted for other alluvial rivers, although they were obtained from a limited number of data collected from a specific river reach.

  • PDF

Analysis of Flow and Bed Change on Hydraulic Structure using CCHE2D : Focusing on Changnyong-Haman (CCHE2D를 이용한 수리구조물에 의한 흐름 및 하상변동 연구 -창녕함안보를 중심으로-)

  • Ahn, Jung Min;Lyu, Siwan
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.707-717
    • /
    • 2013
  • Channel-bed of erosion and sedimentation, where eroded bed and bank materials re-deposit through the action of flow, is a natural phenomenon in alluvial systems. Analysis using a numerical model is important to understand the sediment transport mechanism associated with erosion and sedimentation near weirs and other hydraulic structures within riverine systems. The local riverbed change near a hydraulic structure (Changnyong-Haman multi-function weir in Nakdong river) has been analyzed in order to examine the effect of hydraulic structure on local bed change. A 2D numerical model (CCHE-2D) has been implemented to simulate the sedimentation and erosion over a reach (10 km) including the weir. For the calibration and verification of the model, the rainfall data from a real event (Typoon 'Maemi' in 2003) has been used for flow and stage simulation. And the simulated results show a good agreement with the observed data for whole domain. From the result, it was found that the installation and operation of weir can aggravate the local bed change caused from the flow field change and resulting redistribution of sediment.

A preliminary study of the hydraulic-geometrical relations of bed slope in some selected alluvial rivers (우리 나라 沖積河川 河床傾斜의 水理機何 特性에 관한 연구)

  • ;;;Woo, Hyoseop;Yu, Kwonkyu;Park, Jongkwan
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.3
    • /
    • pp.253-265
    • /
    • 1994
  • The hydraulic-geometrica1 relations between the riverbed slope and water discharge and other hydraulic variables in some selected alluvial rivels in Korea have been investigated. The rivers from which the data relevant to this study were collected are mainly the first tributaries, considered to be mostly in the equilibrium state, of the 10 major rivers in Korea. The investigating methods adopted in this study are similar to the one suggested by Leopold and Maddock and the one suggested by Garde. All of 18 rivers their drainage areas of which range between 100-2,000 $\textrm{km}^2$ were considered and the changes in riverbed slope, drainage area, bed material size along the downstream river distance were measured. It is found in this study that the change in the riverbed slope, S, along the downstream can be expressed in terms of the coefficient, $\beta$, expressing the change in the drainage area along the downstream and the drainage area, A, by an empirical relation as 0.0063 0.0063 S = $S_{ 0}$ $A_{0}$$^{-------- +0.51}$A-$^{-------- -0.51}$. $\beta$ $\beta$ According to this relation, the riverbed slope of the river reaches investigated in this study appear to be proportional to the -0.6th power of the drainage area. This result is consistent with the previous ones obtained by Hack.k.

  • PDF

Recruitment and Succession of Riparian Vegetation in Alluvial River Regulated by Upstream Dams - Focused on the Nakdong River Downstream Andong and Imha Dams - (댐 하류 충적하천에서 식생이입 및 천이 - 낙동강 안동/임하 댐 하류하천을 중심으로 -)

  • Woo, Hyo-Seop;Park, Moon-Hyung;Cho, Kang-Hyun;Cho, Hyung-Jin;Chung, Sang-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.5
    • /
    • pp.455-469
    • /
    • 2010
  • Changes of geomorphology in alluvial river and vegetation recruitment on its floodplain downstream from dams are investigated both qualitatively and quantitatively focusing on the downstream of Andong dam and Imha dam on the Nakdong River. Results of the analyses of river morphology and bed material in the study site show a general trend of riverbed degradation with a max scour of 3 m and bed material coarsening from pre-dam value of 1.5 mm in D50 to post-dam value of 2.5 mm. Decrease in bed shear stress due to the decrease in flood discharge have caused vegetation recruitment on the once-naked sandbars. As result, the ratio of area of vegetated bars over total area of bars has drastically changed from only 7% in 1971 before the Andong dam (constructed in 1976) to 25% after it, and increased to 43% only three year after the Imha dam (constructed in 1992) and eventually to 74% by 2005. Analysis of the vegetation succession at Wicjeol subreach, one of the three subreaches selected in this study for detailed investigation, has clearly shown a succession of vegetation on once-naked sand bars to a pioneering stage, reed and grass stage, willow shrub and eventually to willow tree stages. At the second subreach selected, two large point bars in front of Hahoe Village seem to have maintained their sand surfaces without a signifiant vegetation recruitment until 2005. The sand bars, however, seem to have been invaded by vegetation recently, which warns river managers to have a countermeasure to protect the sand bars from vegetation invasion in order to conserve them for the historical village of Hahoe. On the other hand, recruitment and establishment of vegetation on the sand bars by artificial disturbance of the river, such as damming, can create an unique habitat of backmarsh in the sandy river, as shown in the case of Gudam Wetland, and may increase the biodiversity as compared with relatively monotonous sand bars. Last, the premise in this study that decrease in flood discharge due to upstream dams and decrease in bed shear stress can induce vegetation recruitment on the naked sand bars in the river has been verified with the analyses of the distribution of dimensionless bed shear stress along the selected cross section in each subreach.

한강하류지형면의 분류와 지형발달에 대한 연구 (양수리에서 능곡까지)

  • Park, No-Sik
    • Journal of the Speleological Society of Korea
    • /
    • no.68
    • /
    • pp.23-73
    • /
    • 2005
  • Purpose of study; The purpose of this study is specifically classified as two parts. The one is to attempt the chronological annals of Quaternary topographic surface through the study over the formation process of alluvial surfaces in our country, setting forth the alluvial surfaces lower-parts of Han River area, as the basic deposit, and comparing it to the marginal landform surfaces. The other is to attempt the classification of micro morphology based on the and condition premising the land use as a link for the regional development in the lower-parts of Han river area. Reasons why selected the Lower-parts of Han river area as study objects: 1. The change of river course in this area is very serve both in vertical and horizontal sides. With a situation it is very easy to know about the old geography related to the formation process of topography. 2. The component materials of gravel, sand, silt and clay are deposited in this area. Making it the available data, it is possible to consider about not oかy the formation process of topography but alsoon the development history to some extent. 3. The earthen vessel, a fossil shell fish, bone, cnarcoal and sea-weed are included in the alluvial deposition in this area. These can be also valuable data related to the chronological annals. 4. The bottom set conglometate beds is also included in the alluvial deposits. This can be also valuable data related to the research of geomorphological development. 5. Around of this area the medium landform surface, lower landform surface, pediment and basin, are existed, and these enable the comparison between the erosion surfaces and the alluvial surfaces. Approach : 1. Referring to the change of river beds, I have calculated the vertical and horizontal differences comparing the topographic map published in 1916 with that published in 1966 and through the field work 2. In classifying the landform, I have applied the method of micro morphological classification in accordance with the synthetic index based upon the land conditions, and furthermore used the classification method comparing the topographic map published in 1916 and in that of 1966. 3. I have accorded this classification with the classification by mapping through appliying the method of classification in the development history for the field work making the component materials as the available data. 4. I have used the component materials, which were picked up form the outcrop of 10 places and bored at 5 places, as the available data. 5. I have referred to Hydrological survey data of the ministry of Construction (since 1916) on the overflow of Han-river, and used geologic map of Seoul metropolitan area. Survey Data, and general map published in 1916 by the Japanese Army Survbey Dept., and map published in 1966 by the Construction Research Laboratory and ROK Army Survey Dept., respectively. Conclusion: 1. Classification of Morphology: I have added the historical consideration for development, making the component materials and fossil as the data, to the typical consideration in accordance with the map of summit level, reliefe and slope distribution. In connection with the erosion surface, I have divided into three classification such as high, medium and low-,level landform surfaces which were classified as high and low level landform surfaces in past. furthermore I have divided the low level landform surface two parts, namely upper-parts(200-300m) and bellow-parts(${\pm}100m$). Accordingly, we can recognize the three-parts of erosion surface including the medium level landform surface (500-600m) in this area. (see table 22). In condition with the alluvial surfaces I have classified as two landform surfaces (old and new) which was regarded as one face in past. Meamwhile, under the premise of land use, the synthetic, micro morphological classification based upon the land condition is as per the draw No. 19-1. This is the quite new method of classification which was at first attempted in this country. 2. I have learned that the change of river was most severe at seeing the river meandering rate from Dangjung-ni to Nanjido. As you seee the table and the vertical and horizontal change of river beds is justly proportionable to the river meandering rate. 3. It can be learned at seeing the analysis of component materials of alluvial deposits that the component from each other by areas, however, in the deposits relationship upper stream, and between upper parts and below parts I couldn't always find out the regular ones. 4. Having earthern vessel, shell bone, fossil charcoal and and seaweeds includen in the component materials such as gravel, clay, sand and silt in Dukso and Songpa deposits area. I have become to attempt the compilation of chronicle as yon see in the table 22. 5. In according to hearing of basemen excavation, the bottom set conglomerate beds of Dukso beds of Dukso-beds is 7m and Songpa-beds is 10m. In according to information of dredger it is approx. 20m in the down stream. 6. Making these two beds as the standard beds, I have compared it to other beds. 7 The coarse sand beds which is covering the clay-beds of Dukso-beds and Nanjidobeds is shown the existence of so-called erosion period which formed the gap among the alluvial deposits of stratum. The former has been proved by the sorting, bedding and roundness which was supplied by the main stream and later by the branch stream, respectively. 8. If the clay-beds of Dukeo-bed and Songpa-bed is called as being transgressive overlap, by the Eustatic movement after glacial age, the bottom set conglomerate beds shall be called as being regressive overlap at the holocene. This has the closest relationship with the basin formation movement of Seoul besides the Eustatic movement. 9. The silt-beds which is the main component of deposits of flood plain, is regarded as being deposited at the Holocene in the comb ceramic and plain pottery ages. This has the closest relationship with the change of river course and river beds.

Prediction MOdels for Channel Bed Evolution Due to Short Term Floods (단기간의 홍수에 의한 하상변동의 예측모형)

  • Pyo, Yeong-Pyeong;Sin, Cheol-Sik;Bae, Yeol-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.597-610
    • /
    • 1997
  • One-dimensional numerical models using finite difference methods for unsteady sediment transport on alluvial river channel are developed. The Preissmann implicit scheme and the Lax-Wendroff two-step explicit scheme with the Method of Characteristics for water motion and a forward time centered space explicit scheme for sediment motion are developed to simulate the sediment transport rate and the variation of channel bed level. The program correctness of each model is successfully verified using volume conservation tests. The sensitivity studies show that higher peak stage level, steeper channel slope and longer flooding duration produce more channel bed erosion. and median grain size, $D_{50}=0.4mm$ give maximum volume loss in this study. Finally, the numerical models are found to produce reasonable results from the various sensitivity tests which reveal that the numerical models have properly responded to the changes of each model parameter.

  • PDF

Experimental Study on the Sediment Sorting Processes of the Bed Surface by Geomorphic Changes in the Alluvial Channels with Mixed Grain Size (실내실험에 의한 혼합사로 구성된 하상 표층에서 지형변동에 따른 유사의 분급 특성 분석)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1213-1225
    • /
    • 2014
  • The development of bars and sediment sorting processes in the braided channels with the mixed grain sizes are investigated experimentally in this study. The sediment in the steep slope channels discharges with highly fluctuation. However, it discharges with relatively periodic cycles in the mild slope channels. The characteristics and amplitudes of the dominant bars are examined by double fourier analysis. The dimensionless sediment particle size decreases as the longitudinal bed elevation increases. However, the size increases as the longitudinal bed elevation decreases. As the dimensionless critical tractive force in the surface layer ratio to the force in the subsurface layer increases, the surface geometric mean size of sediments and the dimensionless sediment particle size decrease. This means that coarse matrix is formed with the dimensionless tractive force by the sediment selective sorting.

Geomorphological Processes of Yuga Alluvial Fan in Korea (유가 선상지의 지형 형성과정)

  • Lee, Gwang-Ryul;Cho, Young Dong
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.2
    • /
    • pp.204-217
    • /
    • 2013
  • This study shows the geomorphological processes of Yuga alluvial fan at Dalseong-gun, Daegu in Korea, based on characteristics of geomorphological surfaces, analysis of geomorphological deposits and OSL age dating. Alluvial fans of this area are classified into three surfaces(YG-F1, YG-F2, YG-F3) and were formed by the depositional processes resulting from the changes in hydraulic geometry of flowing water which was a stream flowing out of mountains debouched on to a plain, not by a sudden decrease in surface gradient of river bed. YG-F3 surface, about 110,000 yr B.P.(MIS 5.4), was formed as Yongri river deposited a lot of debris. This result was due to the process that the deposition took place actively with the upward of base level as the last interglacial period began. Later, the denudation of the river valley and geomorphological surface constantly occurred and the local and seasonal changes were found in precipitation and stream discharge with the beginning of the interstadial of the last glacial stages(MIS 3), leading to YG-F2 formed by debris flow, earth flow, mud flow and stream flow. Then, short-term climate changes and temporal climate events repeatedly caused aggradation and denudation over time and going through these processes, YG-F1 is believed to have been made by earth flow or mudflow during the last glacial maximum(MIS 2).

  • PDF

The Influences of Aquifer Thermal Energy Storage (ATES) System on Geochemical Properties of Groundwater (대수층 계간 축열시스템 적용을 위한 지하수의 화학적 특성 변화)

  • Choi, Hanna;Lee, Hong-Jin;Shim, Byoung Ohan
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.14-24
    • /
    • 2021
  • Aquifer thermal energy storage (ATES) system uses groundwater thermal energy for cooling and heating of buildings, and it is also often utilized to provide warm water to crops and plants for the purpose of enhancing agricultural yields. This study investigated the potential influences of a ATES system on the geochemical properties of groundwater by simulating the variation of hydrochemistry and saturation index of groundwater during ATES operation. The test bed was installed at an agricultural field, which is mainly composed of an groundwater-rich alluvial plain. The simulation results showed no significant precipitation of mineral phases such as manganese-iron oxide, carbonate and sulfate around the ATES test bed, as well as no debasement of other important water quality parameters. The implementation of ATES system in the study area was appropriate and effective for utilizing the thermal energy of groundwater for agricultural use.

A Study on the Landforms Near of Mooseom Village, Naeseongcheon (내성천 무섬마을 인근의 하천 지형 특성에 대한 연구)

  • Kim, Jong Yeon;Shin, Won Jeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.3
    • /
    • pp.1-17
    • /
    • 2019
  • Naeseongcheon is Korea's representative sand stream, and it is one of the regions where the dynamic changes of various river topography developed in the sand bed can be observed. Most of drainage area near of the river channel are formed with Daebo granite, and the granite weathering zone is developed at the surface of hill. Due to the massive input of sediment flux, braided channel reaches are found some of the area. However, the results of the study shows that the alluvial layer is very thin in some reaches. In addition, bedrock or weathered materials, including the Tors are exposed at the channel beds. On the other hand, during the flood, a considerable amount of sediment was introduced, causing the massive sediment to be close to 1m thick. In addition, despite the short distance, large changes in the particle size and sorting of the sediment were observed. Vegetation, on the other hand, has been shown to have a significant effect on the development of the overall channel bed topography, as reported in previous studies. In small floods or low water levels, vegetation's protection role of the surface is predominates, but in large flood conditions, herbaceous loss at the surface of the point bars, accelerating the erosion of surface.