• Title/Summary/Keyword: allowable damage

Search Result 131, Processing Time 0.022 seconds

Free Spanning of Offshore Pipelines by DNV 2002 (DNV 2002에 의한 해저관로의 자유경간해석)

  • Choi, Han-Suk;Joo, Joo-Kyung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.29-33
    • /
    • 2002
  • A procedure of free span and fatigue analysis of offshore pipelines was made per DNV-RP-F105, 2002. The new method includes the axial force and deflection load in pipelines. The screening criteria were used to calculate the allowable span lengths. The screening criteria allow small amplitudes of vortex-induced vibration due to wave and current loading. However, the induced pipe stress is very small and usually below the limit stress of a typical S-N curve. A simplified method was established to calculate the fatigue damage due to long-term current distribution. The long-term current statistics was assumed with a 3-parameter Weibull distribution. The fatigue damage was estimated for the span lengths obtained from the screening criteria for various conditions. Sample calculations show the effect of axial force for various boundary conditions.

  • PDF

A Case Study on Reinforcement Method by Excavation Adjacent to the Subway Tunnel using Numerical Analysis (수치해석을 통한 지하철 구조물 인접 굴착에 따른 보강공법 적용사례연구)

  • Byun, Yo-Seph;Jung, Kyoung-Sik;Chun, Byung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.9
    • /
    • pp.5-11
    • /
    • 2011
  • Recently, large and deep excavations are increasing. The damage of adjacent structures due to excavation has steadily increased with increasing construction demand. Especially in urban development and poor conditions, the excavation adjacent to the subway structures has caused a lot of problems. This paper was reviewed that the underground excavation and reinforcement of the status process through a case study on the field. And stability analysis through the case study evaluates applicability for reasonable reinforcement method by numerical analysis. As a result, the strata distribution condition of all 16 sites consisted of landfill from the top and distributed in the order of deposits, weathered soils, weak rock from the bottom. Also, when proceeding the excavation adjacent to structures, the location of site and layer conditions have highly effect on the results of the construction. Therefore, this study was applied reinforcement method to protect damage by excavation. Displacement and settlement were within allowable criterion and hence, stability of structure was analyzed as safe.

Determination of Dynamic Free Span Length for Subsea Pipelines with General Boundary Conditions (일반화된 경계조건을 갖는 해저파이프라인의 동적 자유경간 결정 방법)

  • 박한일
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.4
    • /
    • pp.290-295
    • /
    • 2001
  • Subsets pipelines are exposed to several potential risks of damage due to corrosion, soil instability, anchor impact and other hazards. One of the main risk factors for the safety of a subsea pipeline is its free spanning. This paper examines the safety of subsea pipelines with free span under axial compressive load. The variation of allowable lengths of dynamic free span is examined for generalized boundary conditions. The free span is modelled as a beam with an elastic foundations and the boundary condition is replaced by linear and rotational springs at each end. A dynamic free span curve is obtained with a function of non-dimensional parameters and can be used usefully for the design of subsea pipelines with a free span. A case study is carried out to introduce the application method of the curve.

  • PDF

Review of National Standards for Allowable Limit of Blast Vibration on Structures (구조물에 대한 국외 발파진동 허용 규제기준 분석)

  • Ryu Chang-Ha
    • Explosives and Blasting
    • /
    • v.23 no.3
    • /
    • pp.1-10
    • /
    • 2005
  • Blast-induced ground vibration nay cause an environmental impact such as neighbour's complaints or damage on adjacent structures and facilities. Complaints associated with blasting have often become a target of public grievances. One of the difficulties to solve the problem is that we do not have a national standard for the acceptance level of blast-induced ground vibration. A peak particle velocity criterion, which was suggested for urbane underground construction, has often been widely used. Efforts have been made to establish more rational criteria. It seems that differing cultures have often differing thresholds of the toleration of vibration, and that technical data or rational grounds for establishing the limits are hardly provided. In this paper, national standards for allowable limit of blast vibration were presented and discussed.

Failure Mode and Fracture Behavior Evaluation of Pipes with Local Wall Thinning Subjected to Bending Load (감육배관의 굽힘하중에 의한 손상모드와 파괴거동 평가)

  • Ahn, Seok-Hwan;Nam, Ki-Woo;Kim, Seon-Jin;Kim, Jin-Hwan;Kim, Hyun-Soo;Do, Jae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.8-17
    • /
    • 2003
  • Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear Power Plant. In Pipes of energy Plants, sometimes, the local wall thinning may result from severe erosion-corrosion (E/C) damage. However, the effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization. crack initiation/growth after ovalization, local buckling and crack initiation/growth after local buckling. Also, the strength and the allowable limit of piping system with local wall thinning were evaluated.

Structural Analysis on Flange Coupling due to Change of Bolt Numbers (볼트 수 변경에 따른 플랜지 커플링에 대한 구조해석)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.57-66
    • /
    • 2013
  • This study investigates structural and vibration analyses due to the change of bolt Numbers on models 1 and 2 of flange couplings connected with both sides of axis. As maximum equivalent stresses of models 1 and 2 are 122.05 and 102.3 MPa respectively by the basis of bolt, these stresses are within the allowable stress of this model and the safety of bolt design is verified. As maximum equivalent stresses of models 1 and 2 are 196.2 and 196.4 MPa respectively by the basis of body, these stresses are within the allowable stress of this model and the safety of body design is verified. Through natural frequency analysis, maximum displacements of model 1 and 2 are shown at the frequencies of 6565.1 and 6614.9 Hz respectively. Maximum displacements in cases of models 1 and 2 are shown at harmonic frequencies of 7760 and 7840 Hz at real loading conditions. By putting these study results together, the durability of vibration at model 2 with bolt numbers of 8 becomes better than model 1 with bolt numbers of 6. These study results can be effectively utilized with the design on flange coupling by anticipating and investigating prevention and durability against its damage.

A Methodology to Determine Composite Material Allowables and Design Values Using Building Block Approach (빌딩블록 접근법을 이용한 복합재 재료 허용치 및 설계치 설정 방법)

  • Kim, Sung Joon;Lee, Seung-gyu;Hwang, In-hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.377-384
    • /
    • 2022
  • In the design of composite aircraft structures, it is very important to set material allowables and design values, which take into account certification. And when determining the material allowable and design value of composite structures, the static strength, damage tolerance requirements, and environmental effects should be considered. The building block approach has been applied to the civil and military aviation industry for a long time and provides the principal certification methodology. This current certification methodology is based on extensive testing including coupon, element, sub-component, and full scale test. In this paper, some examples of composite allowable tests have been presented and the fundamental background and application methods of the building block approach have been presented.

Structural Performance Evaluation of System Scaffolding for Elevator Installation Work (엘리베이터 설치 작업용 시스템 비계의 구조 성능 평가)

  • Jong Moon Hwang;Gi Yeol Lee
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.61-68
    • /
    • 2023
  • This study performed a structural performance evaluation of a system scaffolding for elevator installation work developed in previous studies. The structural performance was evaluated via a structural test conducted to apply the working load specified in the design standard. The deflection of the horizontal member and the stress of each member constituting the system scaffolding were measured. Consequently, the structural safety evaluation including structural behavior and required performance was performed using the deflection and stresses measured from the structural test. The structural test and safety evaluation results based on the heavy working load corresponding to the design load indicated that the deflection, which is the performance criterion of the horizontal member, did not exceed the allowable value. Further, each member's stress, which is a safety evaluation indicator, did not exceed the allowable strength for both horizontal and vertical members with bending behavior and fordable bracing with tensile behavior, while also satisfying the required safety factor. In addition, the results confirmed the safety against deformation, partial damage, and destruction owing to excessive and maximum load. Therefore, the system scaffolding developed in this study satisfies both the structural performance and safety required by the design standards; thus, it can be applied to elevator installation work sites.

The Behavior of Bearing Capacity for the Precast files (기성말뚝의 지지거동)

  • 박영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.107-116
    • /
    • 2000
  • Dynamic and static load tests are conducted in four construction sites by using steel pipe piles(SPP) and concrete piles to compare differences of load bearing mechanism. Steel pipe piles are instrumented with electric strain gages and are subject to dynamic load tests during driving. The damage of strain gages attached is checked simultaneously. Static load test is also conducted on the same piles after two to seven days' elapse. Then load-settlement behavior and shaft and/or tip resistances are measured. As a result, the allowable bearing capacity calculated by the Davisson's offset method of CAPWAP analysis shows 2~33% larger than that of static load test. The average value of allowable bearing capacity of static load test is closer to the allowable capacity obtained at the safety factor of 2.5 applied on ultimate bearing capacity than to the one obtained from the Davisson's offset method. The analysis of strain gage readings shows that unit skin friction increases with depth. Furthermore, the friction mobilized around the 1~2m above the pile tip considerably contributes to the total shaft resistance.

  • PDF

Numerical Analysis of Concrete Lining and Rockbolt Behavior of the Tunnel Associated with Blast-induced Vibration (발파진동으로 인한 터널 콘크리트 라이닝과 록볼트 거동의 수치해석적 분석)

  • Jeon, Sang-Soo;Jang, Yang-Won
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.69-78
    • /
    • 2009
  • Since the blast vibration induced by explosives of the powder possibly provide damage of the nearby structures adjacent to the tunnel, the stability of the nearby structures should be estimated. In this study, the stability of the tunnel based on the allowable peak particle velocity of the structures as well as allowable stress of the structures presented in the concrete structural design standard was estimated with respect to the stress of the concrete lining and axial force of the rockbolt during the blasting operation at the ground surface of the pre-existing tunnel. The analyses were carried out by using $FLAC^{2D}$ which is one of the programs developed based on the finite difference method. The bending compressive stress and shear stress of the concrete lining and axial force of the rockbolt were rapidly increased when the blasting operation was conducted near the tunnel.