• 제목/요약/키워드: all-ceramic dental crowns

Search Result 69, Processing Time 0.027 seconds

Comparative fracture strength analysis of Lava and Digident CAD/CAM zirconia ceramic crowns

  • Kwon, Taek-Ka;Pak, Hyun-Soon;Yang, Jae-Ho;Han, Jung-Suk;Lee, Jai-Bong;Kim, Sung-Hun;Yeo, In-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.92-97
    • /
    • 2013
  • PURPOSE. All-ceramic crowns are subject to fracture during function. To minimize this common clinical complication, zirconium oxide has been used as the framework for all-ceramic crowns. The aim of this study was to compare the fracture strengths of two computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia crown systems: Lava and Digident. MATERIALS AND METHODS. Twenty Lava CAD/CAM zirconia crowns and twenty Digident CAD/CAM zirconia crowns were fabricated. A metal die was also duplicated from the original prepared tooth for fracture testing. A universal testing machine was used to determine the fracture strength of the crowns. RESULTS. The mean fracture strengths were as follows: $54.9{\pm}15.6$ N for the Lava CAD/CAM zirconia crowns and $87.0{\pm}16.0$ N for the Digident CAD/CAM zirconia crowns. The difference between the mean fracture strengths of the Lava and Digident crowns was statistically significant (P<.001). Lava CAD/CAM zirconia crowns showed a complete fracture of both the veneering porcelain and the core whereas the Digident CAD/CAM zirconia crowns showed fracture only of the veneering porcelain. CONCLUSION. The fracture strengths of CAD/CAM zirconia crowns differ depending on the compatibility of the core material and the veneering porcelain.

Evaluation of the marginal and internal gap of metal-ceramic crown fabricated with a selective laser sintering technology: two- and three-dimensional replica techniques

  • Kim, Ki-Baek;Kim, Jae-Hong;Kim, Woong-Chul;Kim, Hae-Young;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.179-186
    • /
    • 2013
  • PURPOSE. One of the most important factors in evaluating the quality of fixed dental prostheses (FDPs) is their gap. The purpose of this study was to compare the marginal and internal gap of two different metal-ceramic crowns, casting and selective laser sintering (SLS), before and after porcelain firing. Furthermore, this study evaluated whether metal-ceramic crowns made using the SLS have the same clinical acceptability as crowns made by the traditional casting. MATERIALS AND METHODS. The 10 study models were produced using stone. The 20 specimens were produced using the casting and the SLS methods; 10 samples were made in each group. After the core gap measurements, 10 metal-ceramic crowns in each group were finished using the conventional technique of firing porcelain. The gap of the metal-ceramic crowns was measured. The marginal and internal gaps were measured by two-dimensional and three-dimensional replica techniques, respectively. The Wilcoxon signed-rank test, the Wilcoxon rank-sum test and nonparametric ANCOVA were used for statistical analysis (${\alpha}$=.05). RESULTS. In both groups, the gap increased after completion of the metal-ceramic crown compared to the core. In all measured areas, the gap of the metal cores and metal-ceramic crowns produced by the SLS was greater than that of the metal cores and metal-ceramic crowns produced using the casting. Statistically significant differences were found between cast and SLS (metal cores and metal-ceramic crown). CONCLUSION. Although the gap of the FDPs produced by the SLS was greater than that of the FDPs produced by the conventional casting in all measured areas, none exceeded the clinically acceptable range.

Comparison of marginal gap of monolithic CAD/CAM-generated crowns according to the ceramic materials for CEREC system (CEREC system에서 사용하는 세라믹 소재로 가공된 CAD/CAM 전부도재관의 변연간격 비교분석)

  • Kim, Jae-Hong;Kim, Ki-Baek;Kim, Sa-Hak
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.119-125
    • /
    • 2016
  • Purpose: The purpose of this study is to evaluate the marginal gap of all-ceramic crowns fabricated by CEREC$^{(R)}$ in-office CAD/CAM system. Methods: The mandibular first molar was selected as the abutment for the experiments. Thirty working models were prepared. VITA Mark II(VM) and VITA Enamic(VE), LAVA Ultimate(LU) blocks were milled using CEREC MCXL with CEREC 3D system to construct 10 crowns for each groups. To measure marginal gap, milled restorations were examined under digital microscope with scale under 160x magnifications. The results were statistically analyzed using the one-way ANOVA and Tukey's HSD test(${\alpha}=0.05$). Results: There was no significant difference in the marginal gap regarding to ceramic materials(p>0.05). Conclusion: Single crowns fabricated using CEREC in-office CAD/CAM system provided clinically acceptable marginal gap. This confirmed that the type of ceramic material used does not determine the precision of fit of a prosthesis.

In vitro performance and fracture resistance of novel CAD/CAM ceramic molar crowns loaded on implants and human teeth

  • Preis, Verena;Hahnel, Sebastian;Behr, Michael;Rosentritt, Martin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.300-307
    • /
    • 2018
  • PURPOSE. To investigate the fatigue and fracture resistance of computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic molar crowns on dental implants and human teeth. MATERIALS AND METHODS. Molar crowns (n=48; n=8/group) were fabricated of a lithium-disilicate-strengthened lithium aluminosilicate glass ceramic (N). Surfaces were polished (P) or glazed (G). Crowns were tested on human teeth (T) and implant-abutment analogues (I) simulating a chairside (C, crown bonded to abutment) or labside (L, screw channel) procedure for implant groups. Polished/glazed lithium disilicate (E) crowns (n=16) served as reference. Combined thermal cycling and mechanical loading (TC: $3000{\times}5^{\circ}C/3000{\times}55^{\circ}C$; ML: $1.2{\time}10^6$ cycles, 50 N) with antagonistic human molars (groups T) and steatite spheres (groups I) was performed under a chewing simulator. TCML crowns were then analyzed for failures (optical microscopy, SEM) and fracture force was determined. Data were statistically analyzed (Kolmogorow-Smirnov, one-way-ANOVA, post-hoc Bonferroni, ${\alpha}=.05$). RESULTS. All crowns survived TCML and showed small traces of wear. In human teeth groups, fracture forces of N crowns varied between $1214{\pm}293N$ (NPT) and $1324{\pm}498N$ (NGT), differing significantly ($P{\leq}.003$) from the polished reference EPT ($2044{\pm}302N$). Fracture forces in implant groups varied between $934{\pm}154N$ (NGI_L) and $1782{\pm}153N$ (NPI_C), providing higher values for the respective chairside crowns. Differences between polishing and glazing were not significant ($P{\geq}.066$) between crowns of identical materials and abutment support. CONCLUSION. Fracture resistance was influenced by the ceramic material, and partly by the tooth or implant situation and the clinical procedure (chairside/labside). Type of surface finish (polishing/glazing) had no significant influence. Clinical survival of the new glass ceramic may be comparable to lithium disilicate.

Esthetic Rehabilitation of Anterior Dentition by All Ceramic Crowns Using IPS e.max CAD : A Case of Tetracycline Discoloration (전치부 전부도재관을 이용한 테트라싸이클린 착색의 심미보철 회복 증례 (IPS e.max CAD 블록의 이용))

  • Kim, Jae-Hong;Cho, Young-kyu;Kim, Hae-Young
    • Journal of dental hygiene science
    • /
    • v.11 no.4
    • /
    • pp.299-303
    • /
    • 2011
  • The purpose of this case report was to present an example of an esthetic and functional rehabilitation of anterior teeth with tetracycline discoloration and minor morphological abnormality of a 39-year old female. A chairside computer-aided design/computer-aided manufacturing (CAD/CAM) system with CEREC AC was applied for the prosthetic procedure and all ceramic crowns made with lithum disilicate (IPS e.max CAD) restored the esthetic and functional features of sixteen anterior teeth successfully.

A 2-year clinical evaluation of Sculpture crowns

  • Ku, Chul-Whoi;Yang, Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.6
    • /
    • pp.806-813
    • /
    • 2000
  • Statement of problems. There are only a few studies available that deal with the clinical behavior of ceromer systems as potential substitutes for metal-ceramic crowns. Purpose. This prospective study was initiated to evaluate the clinical performance of 35 Sculpture crowns after 2 years in service. Material and methods. Thirty five Sculpture crowns were placed for 20 patients (7 men and 13 women). All patients were treated by the same dentist, and all restorations were fabricated by the same dental laboratory. Crown placement involved both the anterior and posterior regions of the dental arches. Patients were evaluated by two examiner at baseline, 12, and 24 months using the CDA quality assessment system in addition to periodontal criteria. Results. Of 34 crowns remaining in the study after 2 years, only one crown had experienced a marginal fracture. The crown was replaced as a result of recurrent caries. All remaining crowns were ranked as either excellent or acceptable for surface and color, anatomic form, and marginal integrity. Conclusion. The 2-year clinical observations and ranking with the CDA quality assessment criteria supported the conclusion that Sculpture crowns may be used in substitutes for metal-ceramic crowns.

  • PDF

OPTICAL EFFECTS OF NONMETALLIC POST AND CORE SYSTEMS ON ALL-CERAMIC CROWNS (비금속 포스트 코어가 전부도재관에 미치는 광학적인 영향)

  • Kim Sung-Won;Cho In-Ho;Lim Ju-Hwan;Lim Heon-Song
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.5
    • /
    • pp.493-506
    • /
    • 2002
  • Recently as the esthetic concerns about dental prosthesis have been increased, the nonmetallic post and core systems have been introduced clinically to improve the color and the low optical transmittance of conventional casting metal post and core systems. The purpose of this study was to compare and analyze the optical transmittance and the shade changes of all-ceramic crowns with two nonmetallic post and core systems. The experimental groups were classified as follows : Total 27 specimens(9 samples in each group) were evaluated. Group I : Natural teeth as a control group Group II : CosmoPost and $Empress^{(R)}$ core (Ivoclar-Vivadent, Liechtenstein) Group III : $LIGHT-POST^{TM}$ and $LIGHT-CORE^{TM}$ (Bisco, U.S.A.) In all group, all-ceramic crowns were fabricated with the same shade of IPS $Empress^{(R)}$ II (Ivoclar-Vivadent, Liechtenstein) after abutment preparation, and then two kinds of spectrophotometers, UV 3101 PC (Shimadzu, Japan) and CM 503i (Minolta Co. Ltd. Japan), were used to measure the optical transmittance and the color value. The following results were obtained : 1. The optical transmittance of each group without all-ceramic crowns, was siginificantly decreased in order of Group III, I and II (p<0.05). 2. The optical transmittance of each group with all-ceramic crowns cemented, were siginificantly decreased in order of Group I, II and III (p<0.05). 3. In comparison with the shade of all-ceramic crowns, there were no significant differences between groups regardless of the cementation. 4. In comparison with the shade changes in each group after the cementation of all-ceramic crowns, there were no significant differences between groups. From the above results, it is thought that the selection among materials used in this study doesn't influence greatly the esthetic restoration, because the differences of optical transmittance were so small that those were clinically insignificant.

Effect of the shades of background substructures on the overall color of zirconia-based all-ceramic crowns

  • Suputtamongkol, Kallaya;Tulapornchai, Chantana;Mamani, Jatuphol;Kamchatphai, Wannaporn;Thongpun, Noparat
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.319-325
    • /
    • 2013
  • PURPOSE. The objective of this study was to determine the effect of the color of a background substructure on the overall color of a zirconia-based all-ceramic crown. MATERIALS AND METHODS. Twenty one posterior zirconia crowns were made for twenty subjects. Seven premolar crowns and six molar crowns were cemented onto abutments with metal post and core in the first and second group. In the third group, eight molar crowns were cemented onto abutments with a prefabricated post and composite core build-up. The color measurements of all-ceramic crowns were made before try-in, before and after cementation. A repeated measure ANOVA was used for a statistical analysis of a color change of all-ceramic crowns at ${\alpha}$=.05. Twenty four zirconia specimens, with different core thicknesses (0.4-1 mm) were also prepared to obtain the contrast ratio of zirconia materials after veneering. RESULTS. $L^*$, $a^*$, and $b^*$ values of all-ceramic crowns cemented either on a metal cast post and core or on a prefabricated post did not show significant changes (P>.05). However, the slight color changes of zirconia crowns were detected and represented by ${\Delta}E{^*}_{ab}$ values, ranging from 1.2 to 3.1. The contrast ratios of zirconia specimens were 0.92-0.95 after veneering. CONCLUSION. No significant differences were observed between the $L^*$, $a^*$, and $b^*$ values of zirconia crowns cemented either on a metal cast post and core or a prefabricated post and composite core. However, the color of a background substructure could affect the overall color of posterior zirconia restorations with clinically recommended core thickness according to ${\Delta}E{^*}_{ab}$ values.

A Finite Element Analysis of Stress Distribution in the Tooth and Crown According to Design of Esthetic Crown (유한요소법을 이용한 심미치관보철의 설계에 따른 치아와 보철물의 응력분산에 관한 연구)

  • Lee, Myung-Kon;Chung, In-Sung;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.115-121
    • /
    • 1999
  • This investing was carried out to evaluate the alteration of stress distribution on teeth and esthetic crowns. Analyzing the stress distribution by the two-dimensional finite element methods, a model of lower 1st molar according to the porcelain fused metal crown an the porcelain fused glass ceramic core crown and the all glass ceramic crown. 1. The pattern of stress distribution showed no apparent differences. 2. The greatest von Mises values were concentrated around the central fossa of all esthetic crowns. The greatest Maximum principle value were concentrated around the interface between the base of esthetic crown and the abutment tooth. It was found that the apatite glass ceramic could be applicable for use in dental crown prosthesis.

  • PDF

In-vitro performance and fracture strength of thin monolithic zirconia crowns

  • Weigl, Paul;Sander, Anna;Wu, Yanyun;Felber, Roland;Lauer, Hans-Christoph;Rosentritt, Martin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.2
    • /
    • pp.79-84
    • /
    • 2018
  • PURPOSE. All-ceramic restorations required extensive tooth preparation. The purpose of this in vitro study was to investigate a minimally invasive preparation and thickness of monolithic zirconia crowns, which would provide sufficient mechanical endurance and strength. MATERIALS AND METHODS. Crowns with thickness of 0.2 mm (group 0.2, n=32) or of 0.5 mm (group 0.5, n=32) were milled from zirconia and fixed with resin-based adhesives (groups 0.2A, 0.5A) or zinc phosphate cements (groups 0.2C, 0.5C). Half of the samples in each subgroup (n=8) underwent thermal cycling and mechanical loading (TCML)(TC: $5^{\circ}C$ and $55^{\circ}C$, $2{\times}3,000cycles$, 2 min/cycle; ML: 50 N, $1.2{\times}10^6cycles$), while the other samples were stored in water ($37^{\circ}C/24h$). Survival rates were compared (Kaplan-Maier). The specimens surviving TCML were loaded to fracture and the maximal fracture force was determined (ANOVA; Bonferroni; ${\alpha}=.05$). The fracture mode was analyzed. RESULTS. In both 0.5 groups, all crowns survived TCML, and the comparison of fracture strength among crowns with and without TCML showed no significant difference (P=.628). Four crowns in group 0.2A and all of the crowns in group 0.2C failed during TCML. The fracture strength after 24 hours of the cemented 0.2 mm-thick crowns was significantly lower than that of adhesive bonded crowns. All cemented crowns provided fracture in the crown, while about 80% of the adhesively bonded crowns fractured through crown and die. CONCLUSION. 0.5 mm thick monolithic crowns possessed sufficient strength to endure physiologic performance, regardless of the type of cementation. Fracture strength of the 0.2 mm cemented crowns was too low for clinical application.