• Title/Summary/Keyword: alkenes

Search Result 88, Processing Time 0.027 seconds

Synthesis and Fragmentation of Furoxanaldehydes in the Gas Phase for Nanopatterned Alkyne Formation on a Solid Surface

  • Kim, Gi-Young;Kim, Ju-Cheon;Lee, Seung-Hee;Kim, Hyung-Jin;Hwang, Kwang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.459-463
    • /
    • 2009
  • Furoxanaldehydes possessing phenyl or alkenyl groups at the 3- or 4-position of the furoxan ring were designed for alkyne formation on a solid surface. Furoxans 2 and 3 were prepared from the corresponding alkenes 2a and 3a by the reaction with NaN$O_2$ in acetic acid. Furoxan 4, in which the furoxan ring is conjugated with a double bond, was prepared from bis(bromomethyl)benzene 4a in 5 steps using the Wittig reaction of aldehyde 1 as the key step. The electron beam-mediated fragmentation of furoxanaldehydes 1-4 in a mass spectrometer was exploited by focusing on alkyne formation on the solid surface. The fragmentation of furoxan 3 possessing diaryl groups afforded diarylacetylene at high efficiency, suggesting that the aryl group conjugated with the furoxan ring could facilitate alkyne formation with the evolution of NO.

Measurement and Estimation of VOC Composition from Gasoline Evaporation

  • Na, K.;Moon, K.-C.;Kim, Y.P.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E3
    • /
    • pp.101-107
    • /
    • 2001
  • Source profiles were developed for a total of 45 volatile organic compounds (VOC) that can be emitted from gasoline evaporation. The gasoline samples of five major brands (for each season) were blended on the basis of the market share in Seoul area and analyzed by a GC-MS/FID system. In addition, we calculated gasoline evaporative compositions using the Raoult's law from the liquid gasoline compositions. The measured and estimated gasoline vapor compositions agree well each other. As a group, alkanes are the most abundant in the gasoline vapors profiles (77.4% on average), followed by alkenes (19.1%), and aromatics (1.7%). As a specie in gasoline vapor, i-pentane is the most abundant, followed by n-butane, n-pentane, i-butane, trans-and cis-2-butenes, 2-methyl-2-butene, and trans-and cis-2-pentenes . It was also seen that aromatic content was much lower in the vapor phase compositions. From the comparison between experimental and calculated compositions, we identified the fact that once the gasoline vapor composition is reliably constructed entirely from the measured gasoline composition and the Raoult's law calculations, the need for doing separate chemical analyses of the gasoline vapor can be reduced.

  • PDF

Changes of Korean Traditional Yu-gwa Flavor and Characteristics during Storage (유과의 저장기간에 따른 휘발성 향미성분 및 특성 분석)

  • Yoo, Seung-Seok
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.1
    • /
    • pp.83-90
    • /
    • 2007
  • The changes of the color, texture and volatile flavor compounds of Yu-gwa were investigated that affected by the oxidation during storage to characteristic Yu-gwa quality. Among the proximate compositions, carbohydrate was the most abundant component, and followed by lipid and moisture. Although the change of the color showed different pattern by the packaging materials during the storage period, the value of yellowness(b) increased but that of lightness(L) decreased dramatically after 3 month storage. In the textural properties reported closely related with the moisture content, hardness was fairly affected on the period of the storage rather than the type of packaging materials. The flavor compounds of Yu-gwa were analyzed to evaluate the change of distinct volatile compounds during storage. Of the twenty one separated volatile compounds, major volatiles were aldehydes, alcohols and alkenes. The results also showed that polyethylene(PE) contained less volatiles than polypropylene(PP) by the oxidation process during storage.2,4-Decadienal was gradually increased with the period of the storage, whereas octane and furan were decreased. The results provided that the change of the flavor distribution during the storage, and also the possibility of the volatiles such as hexanal, nonanal and 2,4-decadienal as the indicator for the oxidation process.

A Pilot Study on Emissions of Air Pollutants Produced from Incineration of Some Municipal Solid Wastes

  • Kim, Haen-Gah;Lee, Byeong-Kyu;Cho, Jung-Bum
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E2
    • /
    • pp.49-56
    • /
    • 2006
  • This pilot study focuses on emissions characterization of air pollutants produced from incineration of some municipal solid wastes (MSWs). The MSWs incinerated by an electric furnace maintained up to $600^{\circ}C$ included food, paper, and plastic wastes. The pollutants analyzed in this study included concentrations of volatile organic compounds (VOCs), bottom ash contents, and heavy metals extracted from the bottom ash of each waste. The VOCs identified were classified based on their chemical structure. The total emissions of VOCs produced from incineration of the papers were identified as the highest followed by those from the plastics and the food wastes. Aliphatic alkenes were major VOC compounds produced from incineration of plastic or food wastes, while furans were major VOCs produced from incineration of papers. The second major VOCs produced from incineration of food, plastics, and papers were aromatics. In particular, hazardous air pollutants such as benzene were produced with considerable amount of emission concentration. The bottom ash contents of papers were usually much higher than those of food or plastic wastes. The bottom ash contents produced from incineration of food and plastics were much lower than those of other MSWs. In analysis of heavy metals extracted by an ultrasonic method from the bottom ashes of the papers, high concentrations of heavy metals were identified from incineration of newspapers and box (cardboard). In addition, it was identified that the general public might be exposed to considerable amounts of lead concentrations during incineration processes and uses of paper cup and from ashes.

Hydrocarbon Speciation in Low Temperature Diesel Combustion (저온 디젤 연소에서 발생하는 탄화수소 종 분석)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.417-422
    • /
    • 2010
  • Low temperature diesel combustion was achieved via a combination of late injection timing ($8.5^{\circ}$ CA BTDC to $0.5^{\circ}$ CA BTDC) and heavy exhaust gas recirculation (37% to 48%) with ultra low sulfur Swedish diesel fuel in a 1.7L common rail direct injection diesel engine. When injection timing is retarded at a certain exhaust gas recirculation rate, the particulate matter and nitrogen oxides decease simultaneously, while the hydrocarbon and carbon monoxide increase. Hydrocarbon speciation by gas chromatography using a flame ionization detector reveals that the ratio of partially burned hydrocarbon, i.e., mainly alkenes increase as the injection timing is retarded and exhaust gas recirculation is increased. The two most abundant hydrocarbon species are ethene which is a representative species of partially burned hydrocarbons, and n-undecane, which is a representative species of unburned hydrocarbons. They may be used as surrogate hydrocarbon species for performing a bench flow reactor test for catalyst development.

Conformations, Chemical Reactivities and Spectroscopic Characteristics of Some Di-substituted Ketenes: An ab initio Study

  • Gupta, V.P.;Sharma, Archna;Agrawal, S.G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1297-1304
    • /
    • 2006
  • A systematic study of the structure, energetics and spectral characteristics of substituted aminoketenes $R(NH_2)$C=C=O (R = H, $CH_3$, $NH_2$, OH, $OCH_3$, CH=$CH_2$, C$\equiv$CH, CN, CHO, NO, $NO_2$) which are highly reactive and transient intermediates in synthesis has been conducted by ab initio calculations at the MP2/6- 31G*//MP2/6-31G* level. Twenty four stable isomers of the eleven substituted aminoketenes having dihedral angles $\phi NH_2\sim120{^{\circ}}$ and $60^{\circ}$ have been identified and their optimized geometries and energies obtained. Electrostatic and steric effects on the molecular geometries have been analyzed. While the $\pi$-acceptor groups lead to planar conformations, the electron-donor groups give rise to non-planar conformations. Isodesmic substituent stabilization energies relative to alkenes have been calculated and correlation with group electronegativities established. Role of induction effect by the substituent groups and resonance effects in charge distribution in the molecules has been analyzed. An analysis of the asymmetric stretching frequencies and intensities of the C=C=O group shows that affect of non-$\pi$ acceptor substituents on the frequency is determined by the field effect (F) and resonance effect (R) parameters, the calculated intensities I (km/mol.) are correlated to group electronegativities $x$ of the substituents by the relationship I = 640.2–100.1 $x$ (r = 0.92). The $\pi$-acceptor substituents increase the intensity which may be explained in terms of their delocalizing effect on the negative charge at the $C_{\beta}$ atom.

Analysis of Organic Compounds in Ambient PM2.5 over Seoul using Thermal Desorption-comprehensive Two Dimensional Gas Chromatography-time of Flight Mass Spectrometry (TD-GCxGC-TOFMS) (Thermal Desorption-comprehensive Two Dimensional Gas Chromatography-time of Flight Mass Spectrometry (TD-GCxGC-TOFMS)을 이용한 서울 대기 중 PM2.5 유기성분 분석)

  • Lee, Ji-Yi;Lane, Douglas A.;Huh, Jong-Bae;Yi, Sung-Muk;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.5
    • /
    • pp.420-431
    • /
    • 2009
  • Characteristics and advantages of the thermal desorption-comprehensive two dimensional gas chromatography-time of flight mass spectrometry (TD-GCxGC-TOFMS) were discussed and the organic compound's analysis result was shown for the ambient $PM_{2.5}$ sample collected in Seoul, Korea. Over 10,000 individual organic compounds were separated from about $70{\mu}g$ of aerosols in a single procedure with no sample pre-treatment. Among them, around 300 compounds were identified and classified based on the mass fragmentation patterns and GCxGC retention times. Several aliphatic compounds groups such as alkanes, alkenes, cycloalkanes, alkanoic acids, and alkan-2-ones were identified as well as 72 PAH compounds including alkyl substituted compounds and 8 hopanes. In Seoul aerosol, numerous oxidized aromatic compounds including major components of secondary organic aerosols were observed. The inventory of organic compounds in $PM_{2.5}$ of Seoul, Korea suggested that organic aerosol were constituted by the compounds of primary source emission as well as the formation of secondary organic aerosols.

Recent Advances in Di-$\pi$-methane Processes. Novel Reactions of 1,4-Unsaturated Compounds Promoted by Triplet Sensitization and Photoelectron Transfer

  • Armesto, Diego;Ortiz, Maria J.;Agarrabeitia, Antonia R.
    • Journal of Photoscience
    • /
    • v.10 no.1
    • /
    • pp.9-20
    • /
    • 2003
  • Recent studies on the photoreactivity of l,4-unsaturated systems have changed some ideas that were firmly established in this area of research for many years. Thus, we have described the first examples of 2-aza-di-$\pi$-methane (2-ADPM) rearrangements promoted by triplet-sensitization and by single electron transfer (SET) using electron-acceptor sensitizers. These reactions afford N-vinylaziridine and cyclopropylimine photoproducts in the first examples of di-$\pi$-methane processes that yield three-membered ring heterocycles. l-Aza-1,4-dienes also undergo SET-promoted l-aza-di-$\pi$-methane (l-ADPM) rearrangements via radical-cation intermediates using electron acceptor sensitizers. In some cases, alternative cyclizations yielding different carbocycles and heterocycles have been observed. The l-ADPM and di-$\pi$-methane (DPM) reactions also occur via radical-anion intermediates on irradiation using electron donor sensitizers. On the other hand, the photoreactivity reported for $\beta$,${\gamma}$-unsaturated aldehydes for many years was decarbonylation to the corresponding alkenes. However, our studies demonstrate that these compounds undergo the oxa-di-$\pi$-methane (ODPM) rearrangement with high chemical and quantum efficiency. A comparison of the photochemical reactivity of $\beta$,${\gamma}$-unsaturated aldehydes and corresponding methyl ketones has shown that the ketones do not undergo the ODPM rearrangement while the corresponding aldehydes are reactive by this pathway. Monosubstituted $\beta$,${\gamma}$-unsaturated aldehydes at C-2 undergo the ODPM rearrangement yielding the corresponding cyclopropane carbaldehydes diastereoselectively. Finally, we have described the first examples of reactions, similar to the well know Norrish Type I process, which take place in the triplet excited state of $\beta$,${\gamma}$-unsaturated carbonyl compounds by excitation of the C-C double bond instead of the carbonyl group.

  • PDF

Biocatalytic Production of Chiral Epoxides (생촉매를 이용한 광학활성 에폭사이드 생산)

  • 이은열;최원재;윤성준;김희숙;최차용
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.291-296
    • /
    • 1999
  • Chiral epoxides are key intermediates for the production of chiral pharmaceuticals, agrochemicals, and functional food additives. Chiral epoxides can be produced by either chemical or biological method. In biocatalytic production routes, chiral epoxides can be produced via epoxidations of prochiral alkenes by monooxygenase or peroxidase. Kinetic resolution of racemic epoxides using whole cells of bacteria or fungi might be commercially useful, since it is possible to obtain chiral epoxides with high optical purities from relatively cheap and readily avaiable racemic epoxides. Some bioprocesses already are commercially developed: the biocatalytic production of chiral epichlorohydrin via microbial stereospecific dehalogenation, and lipase-catalyzed enantioselective hydrolysis in a hollow fiber membrane bioreactor for the production of chiral methyl trans-3-(4-methoxyphenyl)glycidate. the intermediate for calcium antagonist diltiazem. The importance of biocatalytic production of chiral epoxides with several examples from literature are presented.

  • PDF

Characterization of TCE-Degrading Bacteria and Their Application to Wastewater Treatment

  • Lee, Wan-Seok;Park, Chan-Sun;Kim, Jang-Eok;Yoon, Byung-Dae;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.569-575
    • /
    • 2002
  • Two bacterial strains capable of degrading trichloroethylene (TCE), isolated form soils contaminated with various chlorinated alkenes, were identified as Alcaligenes odorous N6 and Nocardia sp. Hl7. In addition, four KCTC strains, including three strains of Pseudomonas putida and one strain of Sphingomonas chlorophenolica, exhibited an ability to degrade toluene. A. odorans N6 and Nocardia sp. H17 degraded 84% of the initial amount of TCE in a basal salts medium (BSM), containing 0.2 mM TCE as the sole source of carbon and energy, in a day. The optimal pH for growth was within a range of 7.0-8.0. A mixed culture of the four toluene-degrading isolates degraded 95% of 0.2 mM TCE with 1.5 mM toluene as an inducer, whereas no TCE was degraded by the same mixture without an inducer. When a mixed culture of all 6 isolates was used, the degradation efficiency of 0.2 mM TCE was 72% without an inducer, in a day, and 82% with toluene as an inducer. In a continuous treatment, 1,000 mg/1 of TCE in an artificial wastewater was completely removed within 18 h when an activated sludge was used along with the microbial mixture, which was 27 h laster than when only an activated sludge was used. Accordingly, it would appear that such a microbial mixture could be effectively applied to the biological treatment of wastewater containing TCE with or without an inducer.