• Title/Summary/Keyword: alkali activated concrete

Search Result 116, Processing Time 0.032 seconds

The strength properties of alkali-activated silica fume mortars

  • Saridemir, Mustafa;Celikten, Serhat
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.153-159
    • /
    • 2017
  • In this study, the strength properties of alkali-activated silica fume (SF) mortars were investigated. The crushed limestone sand with maximum size of 0-5 mm and the sodium meta silicate ($Na_2SiO_3$) used to activate the binders were kept constant in the mortar mixtures. The mortar specimens using the replacement ratios of 0, 25, 50, 75 and 100% SF by weight of cement together with $Na_2SiO_3$ at a constant rate were produced in addition to the control mortar produced by only cement. Moreover, the mortar specimens using the replacement ratio of 4% titanium dioxide ($TiO_2$) by weight of cement in the same mixture proportions were produced. The prismatic specimens produced from eleven different mixtures were de-moulded after a day, and the wet or dry cure was applied on the produced specimens at laboratory condition until the specimens were used for flexural strength ($f_{fs}$) and compressive strength ($f_c$) measurement at the ages of 7, 28 and 56 days. The $f_{fs}$ and $f_c$ values of mortars applied the wet or dry cure were compared with the results of control mortar. The findings revealed that the $f_c$ results of the alkali activated 50% SF mortars were higher than that of mortar produced with Portland cement only. It was found that the $f_{fs}$ and $f_c$ of alkali-activated SF mortars cured in dry condition was averagely 4% lower than that of alkali-activated SF mortars cured in wet condition.

Strength Development of Blended Sodium Alkali-Activated Ground Granulated Blast-Furnace Slag (GGBS) Mortar (혼합된 나트륨계열 활성화제에 의한 고로슬래그 기반 모르타르의 강도발현 특성)

  • Kim, Geon-Woo;Kim, Byeong-Jo;Yang, Keun-Hyeok;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • Strength model for blasted furnace slag mortar blended with sodium was investigated in this study. The main parameters of AAS (alkali activated slag) mortar were dosage of alkali activator, water to binder ratio (W/B), and aggregate to binder ratio (A/B). For evaluating the property related to the dosage of alkali activator, sodium carbonate ($Na_2CO_3$) of 4~8% was added to 4% dosage of sodium hydroxide (NaOH). W/B and A/B was varied 0.45~0.60 and 2.05~2.85, respectively. An alkali quality coefficient combining the amounts of main compositions of source materials and sodium oxide ($Na_2O$) in sodium hydroxide and sodium carbonate is proposed to assess the compressive strength of alkali activated mortars. Test results clearly showed that the compressive strength development of alkali-activated mortars were significantly dependent on the proposed alkali quality coefficient. Compressive strength development of AAS mortars were also estimated using the formula specified in the previous study, which was calibrated using the collected database. Predictions from the simplified equations showed good agreements with the test results.

Degradation Propeties of Alkali-Activated Alumino-Silicate Composite Body Exposed to High Temperature (알칼리 활성화 알루미노실리케이트계 경화체의 고온 열화 특성)

  • Kim, Won-Ki;Kim, Hong-Joo;Lee, Seung-Heun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.627-630
    • /
    • 2005
  • This paper examines degradation properties of alkali-activated alumino-silicate composite body by NAS solution exposed to high temperature. Activators include sodium hydroxides and sodium silicate solution. In the result of experiment, flexural and compressive strength of AAS base mortar exposed to high temperature ($400\~600^{\circ}C$) was higher than alumina cement base mortar. Particularly, In case of compressive strength, alumina cement base mortar was decreased by about $60\~70\%$. While, AAS base mortar exposed to high temperature ($400\~600^{\circ}C$) was higher than that curing by room temperature. The above results showed that AAS base inorganic binder has a good mechanical properties exposed to high temperature($400\~600$).

  • PDF

Strength behaviour and hardening mechanism of alkali activated fly ash Mortars (알카리 활성화에 의한 fly ash 경화체의 강도 발현 메카니즘에 관한 연구)

  • Jo Byung Wan;Moon Rin Gon;Park Seung Kook;Lim Sang Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.321-324
    • /
    • 2004
  • The discharge of fly ash that is produced by coal-fired electric power plants is rapidly increasing in Korea. The utilization of fly ash in the raw materials would contribute to the elimination of an environmental problem and to the development of new high-performance materials. So it is needed to study the binder obtained by chemically activation of pozzolanic materials by means of a substitute for the exiting cement. This paper concentrated on the strength development according to the kind of chemical activators, the curing temperature, the heat curing time. Also Scanning electron microscopy and X-Ray diffraction analysis show what the reaction products of the alkali activated fly ash are.

  • PDF

Evaluation of Absorbent-Pervious Alkali-Activated Block Using Recycled Aggregate (순환골재를 이용한 보투수성 알칼리 결합재 블록의 성능평가)

  • Park, Kwang-Min;Kim, Hyung-Suk;Cho, Young-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.160-167
    • /
    • 2017
  • The purpose of this study is to identify the possibility of developing the 100% Recycled-resources Absorbent-Pervious Alkali-activated Blocks using both the alkalli-binder and the recycled aggregate. In addition, It established a test method such as Void ratio, compressive strength, coefficient permeability, absorption, and evaporation. As a result, an alkali-activated using recycled aggregate block was able to manufacture an 24 MPa class absorbent-pervious blocks with a liquid type sodium silicate and early high temperature curing. In this case, water-holding capacity, absorption and relative absorption were more effective than the natural aggregates. In conclusion, Absorbent-pervious alkali-activated Block Using recycled aggregate has a surface temperature reducing effect of approximately 10 % compared to ordinary concrete block.

A Study on Early Age Properties of Alkali Activated Slag Mortar According to Water/Binder Ratio (물-결합재비에 따른 알칼리 활성 슬래그 모르타르의 초기 재령 특성에 관한 연구)

  • Oh, Sang-Hyuk;Kim, Dae-Wang;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.63-69
    • /
    • 2012
  • Recently, the cement industries brought very severe environment problems such as resource depletion and global warming with massive carbon dioxide during its production. The number of cases using industrial by-products such as the ground granulated blast furnace slag (GGBFS) in concrete mixtures is increasing to resolve the environmental issue. GGBFS is mainly used in the range between 20 to 50% to replace cement, but nowadays lots of researches are carried out to develop the alkali-activated slag (AAS) concrete with no cement. In this study, the early age properties of alkali activated slag (AAS) mortar are investigated to obtain the fundamental data for AAS concrete application to structural members. The experimental variables were the water-binder ratios of 0.3, 0.4, and 0.5 and NaOH as the alkali activator of 4%, 8%, and 12% by the mass of GGBFS, and compressive strength, flow, setting time, and ultrasonic pulse velocity of AAS mortars were measured and analyzed. It is found from the test results that as the normal concrete the lower W/B, the higher compressive strength. However, superplasticizer has to be used for producing high strength AAS concrete because the workability of AAS mortar are significantly lowered.

  • PDF

An Experimental Study on Alkali-Silica Reaction of Alkali-Activated Ground Granulated Blast Furnace Slag Mortars (알칼리 활성 고로슬래그 미분말 모르터의 알칼리-실리카 반응에 관한 실험적 연구)

  • Kim, Young-Soo;Moon, Dong-Il;Lee, Dong-Woon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.345-352
    • /
    • 2011
  • The purpose of this study was to investigate the expansion of alkali-activated mortar based on ground granulated blast furnace slag containing reactive aggregate due to alkali-silica reaction. In addition, this study was particularly concerned with the behavior of these alkaline materials in the presence of reactive aggregates. The experimental program included expansion measurement of the mortar bar specimens, as well as the determination of the morphology and composition of the alkali-silica reaction products by using scanning electron microscopy(SEM), and energy dispersive x-ray(EDX). The experiment showed that while alkali-activated ground granulated blast furnace slag mortars showed expansion due to the alkali-silica reaction, the expansion was 0.1% at Curing Day 14, showing that it is safe. After the accelerated test, SEM and BEM analysis showed the presence of alkali-silica gel and rim around the aggregate and cement paste. According to the EDX, the reaction products decreased markedly as alkali-activated ground granulated blast furnace slag was used. In addition, for the substitutive materials of mineral admixture, a further study on improving the quality of alkali-activated ground granulated blast furnace slag is needed to assure of the durability properties of concrete.

Tensile strain-hardening behaviors and crack patterns of slag-based fiber-reinforced composites

  • Kwon, Seung-Jun;Choi, Jeong-Il;Nguyen, Huy Hoang;Lee, Bang Yeon
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.231-237
    • /
    • 2018
  • A strain-hardening highly ductile composite based on an alkali-activated slag binder and synthetic fibers is a promising construction material due to its excellent tensile behavior and owing to the ecofriendly characteristics of its binder. This study investigated the effect of different types of synthetic fibers and water-to-binder ratios on the compressive strength and tensile behavior of slag-based cementless composites. Alkali-activated slag was used as a binder and water-to-binder ratios of 0.35, 0.45, and 0.55 were considered. Three types of fibers, polypropylene fiber, polyethylene (PE) fiber, and polyparaphenylene-benzobisethiazole (PBO) fiber, were used as reinforcing fibers, and compression and uniaxial tension tests were performed. The test results showed that the PE fiber series composites exhibited superior tensile behavior in terms of the tensile strain capacity and crack patterns while PBO fiber series composites had high tensile strength levels and tight crack widths and spacing distances.

Mechanical Properties of Alkali-Activated Slag-Based Concrete Using Lightweight Aggregates (경량골재를 사용한 알칼리 활성 슬래그 콘크리트의 역학적 특성)

  • Yang, Keun-Hyeok;Oh, Seung-Jin;Song, Jin-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.405-412
    • /
    • 2008
  • Six alkali-activated (AA) concrete mixes were tested to explore the significance and limitations of developing an environmental friendly concrete. Ground granulated blast-furnace slag and powder typed sodium silicate were selected as source material and an alkaline activator, respectively. The main parameter investigated was the replacement level of lightweight fine aggregate to the natural sand. Workability and mechanical properties of lightweight AA concrete were measured: the variation of slump with time, the rate of compressive strength development, the splitting tensile strength, the moduli of rupture and elasticity, the stress-strain relationship, the bond resistance and shrinkage strain. Test results showed that the compressive strength of lightweight AA concrete sharply decreased when the replacement level of lightweight fine aggregate exceeded 30%. In particular, the increase in the discontinuous grading of lightweight aggregate resulted in the deterioration of the mechanical properties of concrete tested. The measured properties of lightweight AA concrete were also compared, wherever possible, with the results obtained from the design equations specified in ACI 318-05 or EC 2, depending on the relevance, and the results predicted from the empirical equations proposed by Slate et al. for lightweight ordinary Portland cement concrete. The stress-strain curves of different concrete were compared with predictions obtained from the mathematical model proposed by Tasnimi. The measured mechanical properties of lightweight AA concrete generally showed little agreement with the predictions obtained from these equations.