References
- ASTM C 494-99a (2002), Standard Specification for Chemical Admixtures for Concrete, Annual Book of ASTM Standards.
- Atis, C.D., Bilim, C., Celik, O. and Karahan, O. (2009), "Influence of activator on the strength and drying shrinkage of alkaliactivated slag mortar", Constr. Build. Mater., 23(1), 548-555. https://doi.org/10.1016/j.conbuildmat.2007.10.011
- Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (1999), "Alkali activation of Australian slag cements", Cement Concrete Res., 29(1), 113-120. https://doi.org/10.1016/S0008-8846(98)00170-7
- Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (2002), "Sulfate attack on alkali-activated slag concrete", Cement Concrete Res., 32(2), 211-216. https://doi.org/10.1016/S0008-8846(01)00659-7
- Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (2003), "Resistance of alkali-activated slag concrete to acid attack", Cement Concrete Res., 33(10), 1607-1611. https://doi.org/10.1016/S0008-8846(03)00125-X
- Bayasi, Z. and Zhou, J. (1993), "Properties of silica fume concrete and mortar", ACI Mater. J., 90(4), 349-356.
- Bernal, S., Gutierrez, R.D., Silvio, D. and Rodriguez, E. (2011), "Effect of binder content on the performance of alkali-activated slag concretes", Cement Concrete Res., 41(1), 1-8. https://doi.org/10.1016/j.cemconres.2010.08.017
- Chindaprasirt, P., Chareerat, T. and Sirivivatnanon, V. (2007), "Workability and strength of coarse high calcium fly ash geopolymer", Cement Concrete Compos., 29(3), 224-229. https://doi.org/10.1016/j.cemconcomp.2006.11.002
- Collins, F.G. and Sanjayan, J.G. (1999), "Workability and mechanical properties of alkali activated slag concrete", Cement Concrete Res., 29(3), 455-458. https://doi.org/10.1016/S0008-8846(98)00236-1
- El-didamony, H., Amer, A.A. and Ela-ziz, H.A. (2012), "Properties and durability of alkali-activated slag pastes immersed in sea water", Ceram., 38(5), 3773-3780. https://doi.org/10.1016/j.ceramint.2012.01.024
- Erdogan, T.Y. (2003), "Concrete", Metu Press, Ankara, Turkey, 741.
- Fernandez-jimenez, A. and Palomo, J.G. (2005), "Composition and microstructure of alkali activated fly ash binder: Effect of the activator", Cement Concrete Res., 35(10), 1984-1992. https://doi.org/10.1016/j.cemconres.2005.03.003
- Fernandez-Jimenez, A., Palomo, J.G. and Puertas, F. (1999), "Alkali-activated slag mortars-mechanical strength behavior", Cement Concrete Res., 29(8), 1313-1321. https://doi.org/10.1016/S0008-8846(99)00154-4
- Guo, X., Shi, Hu., Chen, L. and Dick, W.A. (2010), "Alkaliactivated complex binders from class C fly ash and cacontaining admixtures", J. Hazard. Mater., 173(1), 480-486. https://doi.org/10.1016/j.jhazmat.2009.08.110
- Han, S.H., Kim, J.K. and Park, Y.D. (2003), "Prediction of compressive strength of fly ash concrete by new apparent activation energy function", Cement Concrete Res., 33(7), 965-971. https://doi.org/10.1016/S0008-8846(03)00007-3
- Hardjito, D., Wallah, S.E., Sumajouw, D.M.J. and Rangan, B.V. (2004), "On the development of fly ash-based geopolymer concrete", ACI Mater. J., 101(6), 467-472.
- Ilter, E. (2007), "Efficiency of silica fume in the high dosage concretes with CEM I 42,5 cement", M.S. Thesis Dissertation, Istanbul Technical University, Istanbul, Turkey.
- Jayanthi, S.J. and Kowsik, R. (2016), "Assessment of strength and durability of bagasse ash and silica fume concrete", Comput. Concrete, 17(6), 801-814. https://doi.org/10.12989/cac.2016.17.6.801
- Khalifeh, M., Saasen, A., Vralstad, T. and Hodne, H. (2014), "Potential utilization of class C fly ash-based geopolymer in oil well cementing operations", Cement Concrete Compos., 53, 10-17. https://doi.org/10.1016/j.cemconcomp.2014.06.014
- Krizan, D. and Zivanovic, B. (2002), "Effects of dosage and modulus of water glass on early hydration of alkali-slag cements", Cement Concrete Res., 32(8), 1181-1188. https://doi.org/10.1016/S0008-8846(01)00717-7
- Mazloom, M., Ramezanianpour, A.A. and Brooks, J.J. (2004), "Effect of silica fume on mechanical properties of high-strength concrete", Cement Concrete Compos., 26(4), 347-357, https://doi.org/10.1016/S0958-9465(03)00017-9
- Oh, J.E., Monteiro, P.J.M., Jun, S.S., Choi, S. and Clark, S.M. (2010), "The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers", Cement Concrete Res., 40(2), 189-196. https://doi.org/10.1016/j.cemconres.2009.10.010
- Pacheco-Torgal, F., Castro-Gomes, J. and Jalali, S. (2008), "Alkali activated binders: A review. Part II: About materials and binder manufacture", Constr. Build. Mater., 22(7), 1305-1314. https://doi.org/10.1016/j.conbuildmat.2007.10.015
- Pilvar, A., Ramezanianpour, A.A., Rajaie, H. and Karein, S.M.M. (2016), "Practical evaluation of rapid tests for assessing the chloride resistance of concretes containing silica fume", Comput. Concrete, 18(6), 793-806. https://doi.org/10.12989/cac.2016.18.6.793
- Puertas, F., Amat, T., Fernandez-jimenez, A. and Vazquez, T. (2003), "Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres", Cement Concrete Res., 33(12), 2031-2036. https://doi.org/10.1016/S0008-8846(03)00222-9
- Roy, D.M., Jiang, W. and Silsbee, M.R. (2000), "Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties", Cement Concrete Res., 30(12), 1879-1884. https://doi.org/10.1016/S0008-8846(00)00406-3
- Serdar, A. (2013), "A ternary optimisation of mineral additives of alkali activated cement mortars", Constr. Build. Mater., 43, 131-138. https://doi.org/10.1016/j.conbuildmat.2013.02.005
- Shi, C., Krivenko, P.V. and Roy, D. (2006), Alkali-Activated Cements and Concretes, Taylor and Francis, U.S.A. and Canada.
- Shi, C. and Xie, P. (1998), "Interface between cement paste and quartz sand in alkali activated slag mortars", Cement Concrete Res., 28(6), 887-896. https://doi.org/10.1016/S0008-8846(98)00050-7
- Toutanji, H., Delatte, N., Aggoun, S., Duval, R. and Danson, A. (2004), "Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete", Cement Concrete Res., 34(2), 311-319. https://doi.org/10.1016/j.cemconres.2003.08.017
- TS 802 (2009), Design of Concrete Mixes, Ankara, Turkey.
- TS EN 1015-11/A1 (2013), Methods of Test for Mortar for Masonry-Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar, Ankara, Turkey.
- TS EN 197-1 (2012), Cement-Part 1: Compositions and Conformity Criteria for Common Cements, Ankara, Turkey.
- TS EN 934-2+A1 (2013), Admixtures for Concrete, Mortar and Grout-Part 2: Concrete Admixtures-Definitions, Requirements, Conformity, Marking and Labelling, Ankara, Turkey.
- Wang, S.D., Pu, X.C., Scrivener, K.L. and Pratt, P.L. (1995), "Alkali activated slag cement and concrete: A review of properties and problems", Adv. Cem. Res., 7(27), 93-102. https://doi.org/10.1680/adcr.1995.7.27.93
- Yang, K.H. and Song, J.K. (2009), "Workability loss and compressive strength development of cementless mortars activated by combination of sodium silicate and sodium hydroxide", J. Mater. Civil Eng., 21(3), 119-127. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:3(119)
- Zivica, V. (2007), "Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures", Constr. Build. Mater., 21(7), 1463-1469. https://doi.org/10.1016/j.conbuildmat.2006.07.002
Cited by
- Strength development of ground perlite-based geopolymer mortars vol.9, pp.3, 2017, https://doi.org/10.12989/acc.2020.9.3.227
- Effects of ground basaltic pumice and high temperatures on the properties of HSMs vol.41, pp.None, 2017, https://doi.org/10.1016/j.jobe.2021.102772