• 제목/요약/키워드: algebraic singularities

검색결과 11건 처리시간 0.028초

V노치 또는 예리한 균열을 가지는 직사각형 평판의 굽힘 진동 (Flexural Vibrations of Rectangular Plates Having V-notches or Sharp Cracks)

  • 정희영;정의영;김주우
    • 한국소음진동공학회논문집
    • /
    • 제14권4호
    • /
    • pp.336-343
    • /
    • 2004
  • This paper reports the first known free vibration data for thin rectangular plates with V-notches. The classical Ritz method is employed with two sets of admissible functions assumed for the transverse vibratory displacements. These sets include (1) mathematically complete algebraic-trigonometric polynomials which guarantee convergence to exact frequencies as sufficient terms are retained, and (2) corner functions which account for the bending moment singularities at the sharp reentrant corner of the Y-notch. Extensive convergence studies summarized herein confirm that the corner functions substantially enhance the convergence and accuracy of nondirectional frequencies for rectangular plates having the V-notch. In this paper, accurate frequencies and normalized contours of vibratory transverse displacement are presented for various notched plates, so that the effect of corner stress singularities may be understood.

V노치 및 예리한 균열을 갖는 N 다변형 단면 입체 실린더의 3차원 진동해석 (Three-Dimensional Vibration Analysis of Solid Cylinders of N-Sided Polygonal Cross-Section Having V-notches or Sharp Cracks)

  • 김주우
    • 한국강구조학회 논문집
    • /
    • 제21권4호
    • /
    • pp.433-442
    • /
    • 2009
  • 본 연구는 V노치 또는 예리한 균열이 존재하는 N 다변형 단면 입체 실린더에 대한 새로운 3차원 진동 데이터를 제시한다. 본 논문에서는 수학적으로 완전한 대수삼각다항식과 V노치 선단을 따라 존재하는 3차원 응력특이도를 명확히 다루는 허용에지함수와 함께 Ritz방법이 적용된다. 응력특이도를 포함하는 다변형 입체 실린더의 정확한 고유진동수 및 모드형상을 얻기 위해서는 에지함수가 필요하다는 것이 수렴도 분석을 통하여 입증된다.

Flexural Vibration of Clamped and Simplv Supported Sectorial Plates with Combinations of Simply Supported and Free Radial Edges

  • Han, Bong-Ko;Kim, Joo-Woo
    • Nuclear Engineering and Technology
    • /
    • 제31권2호
    • /
    • pp.214-225
    • /
    • 1999
  • An accurate method is presented for flexural vibrations of sectorial plates having simply supported-free and free-free radial edges, when the circular edge is either clamped or simply supported. The classical Ritz method is employed with two sets of admissible functions assumed for the transverse vibratory displacements. These sets consist of : (1) mathematically complete algebraic-trigonometric polynomials which gurantee convergence to exact frequencies as sufficient terms are retained, and (2) comer functions which account for the bending moment singularities at re-entrant comer of the radial edges having arbitrary edge conditions. Accurate (at least four significant figures) frequencies and normalized contours of the transverse vibratory displacement are presented for the spectra of corner angles [90$^{\circ}$, 180$^{\circ}$(semi-circular), 270$^{\circ}$, 300$^{\circ}$, 330$^{\circ}$, 350$^{\circ}$, 355$^{\circ}$, 360$^{\circ}$ (complete circular)] causing a re-entrant comer of the radial edges. Future solutions drawn from alternative numerical procedures and finite element techniques may be compared with these accurate results.

  • PDF

V노치 또는 예리한 균열을 가지는 Mindlin 직사각형 평판의 휨 진동해석 (Flexural Vibration Analysis of Mindlin Rectangular Plates Having V-notches or Sharp Cracks)

  • Kim, Joo-Woo;Jung, Eui-Young;Kim, Seung-Hyun
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.35-42
    • /
    • 2003
  • This paper provides the first known flexural vibration data for thick (Mindlin) rectangular plates having V-notches. The V-notch has bending moment and shear force singularities at its sharp corner due to the transverse vibratory bending motion. Based upon Mindlin plate theory, in which transverse shear deformation and rotary inertia effects are considered, the Ritz procedure is employed with a hybrid set of admissible functions assumed for the rotational and transverse vibratory displacements. This set includes: (1) a mathematically complete set of admissible algebraic-trigonometric polynomials which guarantee convergence to exact frequencies as sufficient terms are retained; and (2) an admissible set of Mindlin corner functions which account for the bending moment and shear force singularities at the sharp corner of the V-notch. Extensive convergence studies demonstrate the necessity of adding the Mindlin corner functions to achieve accurate frequencies for rectangular plates having sharp V-notches.

  • PDF

AN EFFICIENT ALGORITHM FOR EVALUATION OF OSCILLATORY INTEGRALS HAVING CAUCHY AND JACOBI TYPE SINGULARITY KERNELS

  • KAYIJUKA, IDRISSA;EGE, SERIFE M.;KONURALP, ALI;TOPAL, FATMA S.
    • Journal of applied mathematics & informatics
    • /
    • 제40권1_2호
    • /
    • pp.267-281
    • /
    • 2022
  • Herein, an algorithm for efficient evaluation of oscillatory Fourier-integrals with Jacobi-Cauchy type singularities is suggested. This method is based on the use of the traditional Clenshaw-Curtis (CC) algorithms in which the given function is approximated by the truncated Chebyshev series, term by term, and the oscillatory factor is approximated by using Bessel function of the first kind. Subsequently, the modified moments are computed efficiently using the numerical steepest descent method or special functions. Furthermore, Algorithm and programming code in MATHEMATICA® 9.0 are provided for the implementation of the method for automatic computation on a computer. Finally, selected numerical examples are given in support of our theoretical analysis.

SYMPLECTIC FILLINGS OF QUOTIENT SURFACE SINGULARITIES AND MINIMAL MODEL PROGRAM

  • Choi, Hakho;Park, Heesang;Shin, Dongsoo
    • 대한수학회지
    • /
    • 제58권2호
    • /
    • pp.419-437
    • /
    • 2021
  • We prove that every minimal symplectic filling of the link of a quotient surface singularity can be obtained from its minimal resolution by applying a sequence of rational blow-downs and symplectic antiflips. We present an explicit algorithm inspired by the minimal model program for complex 3-dimensional algebraic varieties.

EXISTENCE OF POLYNOMIAL INTEGRATING FACTORS

  • Stallworth, Daniel T.;Roush, Fred W.
    • Kyungpook Mathematical Journal
    • /
    • 제28권2호
    • /
    • pp.185-196
    • /
    • 1988
  • We study existence of polynomial integrating factors and solutions F(x, y)=c of first order nonlinear differential equations. We characterize the homogeneous case, and give algorithms for finding existence of and a basis for polynomial solutions of linear difference and differential equations and rational solutions or linear differential equations with polynomial coefficients. We relate singularities to nature of the solution. Solution of differential equations in closed form to some degree might be called more an art than a science: The investigator can try a number of methods and for a number of classes of equations these methods always work. In particular integrating factors are tricky to find. An analogous but simpler situation exists for integrating inclosed form, where for instance there exists a criterion for when an exponential integral can be found in closed form. In this paper we make a beginning in several directions on these problems, for 2 variable ordinary differential equations. The case of exact differentials reduces immediately to quadrature. The next step is perhaps that of a polynomial integrating factor, our main study. Here we are able to provide necessary conditions based on related homogeneous equations which probably suffice to decide existence in most cases. As part of our investigations we provide complete algorithms for existence of and finding a basis for polynomial solutions of linear differential and difference equations with polynomial coefficients, also rational solutions for such differential equations. Our goal would be a method for decidability of whether any differential equation Mdx+Mdy=0 with polynomial M, N has algebraic solutions(or an undecidability proof). We reduce the question of all solutions algebraic to singularities but have not yet found a definite procedure to find their type. We begin with general results on the set of all polynomial solutions and integrating factors. Consider a differential equation Mdx+Ndy where M, N are nonreal polynomials in x, y with no common factor. When does there exist an integrating factor u which is (i) polynomial (ii) rational? In case (i) the solution F(x, y)=c will be a polynomial. We assume all functions here are complex analytic polynomial in some open set.

  • PDF

THEORY OF INFINITELY NEAR SINGULAR POINTS

  • Hironaka, Heisuke
    • 대한수학회지
    • /
    • 제40권5호
    • /
    • pp.901-920
    • /
    • 2003
  • The notion of infinitely near singular points, classical in the case of plane curves, has been generalized to higher dimensions in my earlier articles ([5], [6], [7]). There, some basic techniques were developed, notably the three technical theorems which were Differentiation Theorem, Numerical Exponent Theorem and Ambient Reduction Theorem [7]. In this paper, using those results, we will prove the Finite Presentation Theorem, which the auther believes is the first of the most important milestones in the general theory of infinitely near singular points. The presentation is in terms of a finitely generated graded algebra which describes the total aggregate of the trees of infinitely near singular points. The totality is a priori very complex and intricate, including all possible successions of permissible blowing-ups toward the reduction of singularities. The theorem will be proven for singular data on an ambient algebraic shceme, regular and of finite type over any perfect field of any characteristics. Very interesting but not yet apparent connections are expected with many such works as ([1], [8]).

MINDLN 부채꼴형 평판의 진동해석 (VIBRATION ANALYSIS OF MINDLIN SECTORIAL PLATES)

  • 김주우;한봉구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.412-417
    • /
    • 1998
  • This paper provides accurate flexural vibration solutions for thick (Mindlin) sectorial plates. A Ritz method is employed which incorporates a complete set of admissible algebraic-trigonometric polynomials in conjunction with an admissible set of Mindlin “corner functions". These corner functions model the singular vibratory moments and shear forces, which simultaneously exist at the vertex of corner angle exceeding 180$^{\circ}$. The first set guarantees convergence to the exact frequencies as sufficient terms are taken. The second set represents the corner singularities, and accelerates convergence substantially. Numerical results are obtained for completely free sectorial plates. Accurate frequencies are presented for a wide spectrum of vertex angles (90$^{\circ}$, 180$^{\circ}$, 270$^{\circ}$, 300$^{\circ}$, 330$^{\circ}$, 350$^{\circ}$, 35 5$^{\circ}$,and 359$^{\circ}$)and thickness ratios.tios.

  • PDF