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AN EFFICIENT ALGORITHM FOR EVALUATION OF
OSCILLATORY INTEGRALS HAVING CAUCHY AND JACOBI

TYPE SINGULARITY KERNELS

IDRISSA KAYIJUKA∗, ŞERIFE M. EGE, ALI KONURALP AND FATMA S. TOPAL

Abstract. Herein, an algorithm for efficient evaluation of oscillatory Fourier-
integrals with Jacobi-Cauchy type singularities is suggested. This method
is based on the use of the traditional Clenshaw-Curtis (CC) algorithms
in which the given function is approximated by the truncated Cheby-
shev series, term by term, and the oscillatory factor is approximated by
using Bessel function of the first kind. Subsequently, the modified mo-
ments are computed efficiently using the numerical steepest descent method
or special functions. Furthermore, Algorithm and programming code in
MATHEMATICA® 9.0 are provided for the implementation of the method
for automatic computation on a computer. Finally, selected numerical ex-
amples are given in support of our theoretical analysis.
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1. Introduction

Herein, we are concerned with the mathematical calculation of Fourier-type in-
tegral of the form

I1−1 (f ;µ) =

∫ 1

−1

f (x)

(1 + x)
α
(1− x)

β
(x− µ)

v
eiωxdx, |µ| < 1, i2 = −1 (1)

where |ω| is strictly greater than 1, α, β ∈ (−∞, 1) , v ∈ N and f is a sufficiently
smooth function on the interval [−1, 1] . For v = 0, the integral (1) has been
extensively investigated by several researchers, (see, for instance [1, 2, 3, 4, 5,
28, 29]). For v = 1 and α = β = 0 the integrals become Cauchy Principal Value
(PVC) integrals and various methods have been developed for their efficient
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computation of it [6, 7, 31, 32] and references in [30, p. 182]. Furthermore, the
same CPV is well recognized as the Hilbert transform when the frequency, ω = 0
and the sufficient condition for the existence of Hilbert transform, that f (x) has
to satisfy a Lipschitz and Hölder condition in a closed interval [-1, 1], is fulfilled.
In this paper, we will consider the cases where α, β ̸= 0 and v = 1. For the case
where v = 0 Gauss Jacobi method [8, p. 113] may be very efficient for handling
the integral of type (1.1) when low frequency values are considered. However,
when the frequency becomes large the method suffers several difficulties and
may require a lot of time in computation and many function evaluations. The
reason for this is that not only does the integral become highly oscillatory but
also there exist singularities at the endpoints of the integration interval. The
asymptotic behavior of such a case was studied in 1955, by A. Erdelyi [9], who
performed integration by parts repeatedly, that is if β ∈ [0,+∞) , α ∈ (−∞, 1)
and f (x) is N times continuously differentiable for |x| ≤ 1, then

∫ 1

−1

f (x) eiωx

(1 + x)
α
(1− x)

β
dx = DN (ω)− CN (ω) + O

(
ω−N−1

)
, as ω → ∞,

where

CN (ω) =
∑N
s=1

Γ(s+α−1)
Γ(s)

√
eπ(s+α−2)ω−s−αe−iω ds−1

dxs−1

[
(1− x)

β
f (x)

]
x=−1

,

DN (ω) =
∑N
s=1

Γ(s+β−1)
Γ(s)

√
eπ(s+β−2)ω−s−βeiω ds−1

dxs−1

[
(1 + x)

α
f (x)

]
x=1

.

Oscillatory integrals play a vital role in applied mathematics, computerized to-
mography, image processing, astronomy, electromagnetic, seismology, and quan-
tum chemistry (for more see, [10, 11, 12, 13, 14, 15] and the references therein).
There have been great papers with phenomenal methods for the efficient eval-
uation of oscillatory integrals. The earliest numerical method was formulated
by Filon [16]. He achieved the successful approximation of f (x) by a polyno-
mial with a second degree to generate the oscillatory equivalent of Simpson’s
rule. Further, other numerical strategies of some weakly singular oscillatory in-
tegrals are Filo-Clenshaw-Curtis [17], Asymptotic methods [18]. However, all
those methods exhibit some shortcomings when the frequency is very large.
In the case ω ≥ 1, v = 1 in (1) the integral presents more difficulties and
the classical Gauss rules cannot directly be applied, due to the fact that not
only does the integral becomes highly oscillatory but also becomes unbounded
at x = µ. Our main contribution in this paper is that we present a method
that is efficient for quite low, moderate and very high value of frequency. In
this approach, we combine the classical Clenshaw-Curtis (CC) methods and the
Steepest descent method to produce a single efficient method. First, the given
function is approximated by the truncated Chebyshev series, term by term,
and the oscillatory factor is approximated by using Bessel function of the first
kind. Subsequently, the modified moments are computed efficiently using the
numerical steepest descent method or special functions in some cases.
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The paper is arranged as follows: In the next section, we give the numerical
formulation of the proposed method. In Section 3, we present the efficient com-
putation of the modified moments. In Section 4, selected numerical examples
are given to substantiate our theoretical analysis. Lastly, concluding remarks
are presented in Section 5.

2. Main results

2.1. Numerical formulation of the method. In the sequel, we are concerned
with the evaluation of the integral (1) for v = 1

I1−1 (f ;µ) =

∫ 1

−1

f (x) eiωx

(1 + x)
α
(1− x)

β
(x− µ)

dx, −1 < µ < 1. (2)

We start by writing the approximation of the smooth function f (x) by the
truncated Chebyshev series

f (x) =

N∑
l=0

al,jTl (x) , (3)

where the double prime in the summation indicates that the first and the last
terms have half weights and Tl (x) is the lthChebyshev polynomial of the first
kind. It is worth pointing out that the formula (3) would always give better
approximation if f (x) is smooth on [−1, 1] , even for small values of N. To
compute the coefficient al,j we first assume that xj = cos πjN , 0 ≤ j ≤ N, then
by orthogonality conditions [19], we have

N∑
j=0

′′Tl (xj)Tk (xj) =


0, if l ̸= k,
N, if l = k = 0 or N,
N
2 , if l = k ̸= 0 or N.

Multiplying on both sides of (3) by Tl (xj) , yields

N∑
j=0

′′f (xj)Tl (xj) =

N∑
j=0

′′
N∑
l=0

′′al,jTl (xj)Tl (xj)

=

N∑
j=0

′′
N∑
l=0

′′al,j cos

(
lπj

N

)
cos

(
lπj

N

)
=

N

2
al,j

Therefore, the coefficient al,j can be computed using the formula

al,j =
2

N

N∑
j=0

”f
(
cos

πj

N

)
cos

(
lπj

N

)
, (4)
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or simply by writing

al,j =
2

N

N∑
j=0

”f (xj)Tl (xj) . (5)

Throughout the paper xj = cos πjN , 0 ≤ j ≤ N, are the (N + 1)− Clenshaw-
Curtis point set. If desired, one may also utilize the following formula:

al,j
′
=

2

N + 1

N∑
j=0

f

(
cos

π (2j + 1)

2 (N + 1)

)
cos

(
πl (2j + 1)

2 (N + 1)

)
. (6)

In Table 6, we show the computational differences using both coefficients (5)
and (6) for various values of the frequency ω and N fixed.
The method by Cooley and Turkey [20], can be employed to efficiently compute
(4) and their algorithm costs only O(N logN) operations by FFT (First Fourier
Transform). Note that the CC quadrature methods which have been investigated
in several papers [21, 22], interpolates f (x) at CC points. Hence, substitute (3)
into (2) we get

IN,l (f ;µ) =

N∑
l=0

”al,jMN,j (α, β, l, µ, ω) . (7)

In the above expression MN,j (α, β, l, µ, ω) is the modified moments which in-
volves singularity types and it can be denoted as

MN,j (α, β, l, µ, ω) =

∫ 1

−1

eiωxTl (x)

(1 + x)
α
(1− x)

β
(x− µ)

dx, −1 < µ < 1. (8)

We may proceed by approximating the oscillatory factor eiωx into Bessel function
of order j as

eixω = 2

∞∑
j=0

′
ijJj(ω)Tj(x). (9)

Then employ the following Chebyshev equality [27]

Tl(x)Tj(x) =
1

2

(
Tl+j(x) + T|l−j|(x)

)
, (10)

and
dl,j =

Ml+j +M|l−j|

2
. (11)

Substituting the above equations (9), (10) and (11) into (7) we obtain a new
approximation which can be written as

Ik(f, µ) = 2

N∑
l=0

′′ ∞∑
j=0

′
ijJj(ω)al,jMk(α, β, l, µ, ω), (12)

where
Mk(α, β, l, µ, ω) =

∫ 1

−1

Tk (x)

(1 + x)
α
(1− x)

β
(x− µ)

dx. (13)
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For α = β = 1/2 (13) can be computed directly from [23] as∫ 1

−1

Tk (x) dx

(1 + x)
α
(1− x)

β
(x− µ)

=

(
4kΓ (1 +K)

2

Γ (1 + 2k)

)
π cot (−πβ) (1 + µ)

α
(1− µ)

β
P

(−β,−α)
k (µ)

−
2−α−βΓ (−β) Γ (−α+ 1 + k) 2F1

(
1 + k, β + α− k, β + 1, 1−µ2

)
Γ (−β − α+ 1 + k)

,

where Γ (z) =
∫∞
0
yz−1e−ydy is the Gamma function, P (a,b)

k (z) is the Jacobi
polynomials and 2F1 (a, b; c;x) is the Hypergeometric function [24], that has the
series expansion of

2F1 (a, b; c;x) =

∞∑
k=0

(a)k (b)k x
k

k! (c)k
,

with (.)k being the Pochhammer’s symbol.

3. Computation of the Modified Moments (8)

Herein, we demonstrate efficiently the computation of the modified moments (8)
and its evaluation is given in the below theorem

Theorem 3.1. The modified moments (8) MN,j (α, β, l, µ, ω) , −1 < µ < 1 can
be transmuted as

MN,j (α, β, l, µ, ω) = G1 (α, β, l, µ, ω) +G2 (α, β, l, µ, ω) +
iπTl (µ) e

iωµ

(1 + µ)
α
(1− µ)

β
,

(14)
where

G1 (α, β, l, µ, ω) = ω(α−1)i(1−α)e−iω
∫ ∞

0

Tl
(
−1 + i tω

)
e−t

tα
(
2− i tω

)β (−1− µ+ i tω
)dt, (15)

and

G2 (α, β, l, µ, ω) = ω(β−1)i(1−β)eiω
∫ ∞

0

Tl
(
1 + i tω

)
e−t

tβ
(
2 + i tω

)α (
1− µ+ i tω

)dt. (16)

Proof. Consider the region Γ in a closed complex plane bounded by P = ∪8
k=1Pk,

with
P1 : y1 (x) = −1 + reix, 0 ≤ x ≤ π

2 , P5 : y5 (x) = 1 + reix, π2 ≤ x ≤ π,
P2 : y2 (x) = x, −1 + r ≤ x ≤ µ− r, P6 : y6 (x) = 1 + ix, r ≤ x ≤ R,
P3 : y3 (x) = µ+ reix, 0 ≤ x ≤ π, P7 : y7 (x) = x+ iR, −1 ≤ x ≤ 1,
P4 : y4 (x) = x, µ+ r ≤ x ≤ 1− r, P8 : y8 (x) = −1 + ix, r ≤ x ≤ R.

(17)
Assume that

ϕ (z) =
Tl (z) e

iωz

(1 + z)
α
(1− z)

β
(z − µ)

,
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since ϕ (z) is analytic at all points in the half-strip of the complex plane −1 ≤
ℜe (z) ≤ 1,ℑ (z) ≥ 0. Then by Cauchy-Goursat theorem we have∮

P

Tl(z)e
iωz

(1+z)α(1−z)β(z−µ)dz =

8∑
k=1

∫
Pk

Tl(x)e
iωx

(1+x)α(1−x)β(x−µ)dx = 0,

which can be re-written from the Fig.1 with ease as∫ µ−r

−1+r

ϕ (x) dx+

∫ 1−r

µ+r

ϕ (x) dx = −

(∮
P1

+

∮
P3

+

∮
P5

+

8∑
m=6

∮
Pm

)
ϕ (z) dz,

(18)

Figure 1. Integration paths for the integral (8)

where the direction of all contours taken counterclockwise as shown in Fig. 1.
It is rather simple to show that the integrals over the quarter circle P1 and P5

results in zero as r → 0. For instance, let P1 : z = −1+ reix, x ∈
[
0, π2

]
, we have∣∣∣∮P1

Tl(z)e
iωz

(1+z)α(1−z)β(z−µ)dz
∣∣∣ =

∣∣∣∣∣− ∫ π20 Tl(−1+reix)e
iω(−1+reix)ireix

(reix)α(2−reix)β(−1+reix−µ) dx

∣∣∣∣∣
≤ r1−α

∣∣∣∣∫ π20 Tl(−1+reix)e−iωeiωreixeix−ixα

(2−reix)β(−1+reix−µ) dx

∣∣∣∣
≤ r1−α

∣∣∣∣∫ π20 F (r, x) dx

∣∣∣∣→ 0, as r → 0.

(19)
In the above expressions, the function F (y, θ) is continuous on y ≤ r and θ ∈[
0, π2

]
, which shows that the direct calculation leads to zero as r → 0. Similar

conclusion can be obtained on the integral over the quarter circle P5 which
gives

∮
P5

Tl(z)e
iωz

(1+z)α(1−z)β(z−µ)dz → 0, as r → 0. The parameterization on P7 : z =
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x+ iR, x ∈ [−1, 1] , gives us∣∣∣∮P7
ϕ (z) dz

∣∣∣ =
∣∣∣− ∫ 1

−1
Tl(x+iR)eiω(x+iR)

(1+x+iR)α(1−x+iR)β(x+iR−µ)dx
∣∣∣

≤ e−ωR
∫ 1

−1

|Tl(x+iR)||eiωx|
|1+x+iR|α|1−x+iR|β |x+iR−µ|dx

→ 0 as R → ∞.

(20)

The integral over P6 : z = 1 + ix, r ≤ x ≤ R yields

−
∮
P6

ϕ (z) dz = eiω (−i)1−β
∫ R

r

Tl (1 + ix) e−ωx

(2 + ix)
α
xβ (1 + ix− µ)

dx. (21)

The integral along the path P8 : z = −1 + ix, x ∈ [r,R] gives

−
∮
P8

ϕ (z) dz = e−iωi1−α
∫ R

r

Tl (−1 + ix) e−ωx

xα (2− ix)
β
(−1 + ix− µ)

dx. (22)

Additionally, the integral over the half-circle with the following parameterization:
P3 : z = µ+ reix, 0 ≤ x ≤ π yields

−
∮
P3
ϕ (z) dz =

∫ π
0

Tl(µ+reix)e
iω(µ+reix)ireix

(1+µ+reix)α(1−µ−reix)β(reix)dx

=
∫ π
0

Tl(µ+reix)eiωreix ieiωµ

(1+µ+reix)α(1−µ−reix)β dx

= ieiωµ Tl(µ)

(1+µ)α(1−µ)β , as r → 0.

(23)

Taking the limits of the above integrals results as r → 0, R→ ∞ and change the
variable where x = t/ω, then substitute them into (18) lead to the conclusion of
the Theorem 3.1.

�

3.1. Evaluation of the integral parts in (14) by Gauss-Laguerre rule.
The semi-infinite integrals G1 and G2 in the theorem (14) can be accurately
evaluated by the Generalized Gauss-Laguerre rule [25]. Moreover, they can be
denoted in a simple form as

G1 (α, β, l, µ, ω) =
∫∞
0
H (t) t−αe−tdt,

G2 (α, β, l, µ, ω) =
∫∞
0
Y (t) t−βe−tdt,

(24)

where
H (t) = ω(α−1)i(1−α)e−iω

Tl
(
−1 + i tω

)(
2− i tω

)β (−1− µ+ i tω
) ,

and
Y (t) = ω(β−1)i(1−β)eiω

Tl
(
1 + i tω

)(
2 + i tω

)α (
1− µ+ i tω

) .
Inasmuch as (24) agrees with the form

∫∞
0
f (x)xre−xdx, r > −1, then Gener-

alized Gauss-Laguerre rule can be utilized to evaluate accurately both integrals
G1 and G2. To do so, let

{
tsj , w

s
j

}N
j=1

be the nodes and weights of the N-point
Generalized Gauss-Laguerre quadrature rule with respect to the weight function
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ws = tse−t, where s ∈ {−α,−β} such that −α > −1 and −β > −1. Therefore,
G1 and G2 can be approximated by the sums

G1,N (α, β, l, µ, ω) =

N∑
j=1

w
(−α)
N,j H

(
t−αN,j

)
+ E1, (25)

and

G2,N (α, β, l, µ, ω) =

N∑
j=1

w
(−β)
N,j Y

(
t−βN,j

)
+ E2, (26)

where
E1 = C

(2N)!H
(2N) (ξ) and E2 = C

(2N)!Y
(2N) (ς) for all ξ, ς ∈ C, and

C = n!Γ (N + s+ 1) for s ∈ {−α,−β}. Thus, the approximation of the modified
moments (14) is given by the following formula

MN,j (α, β, l, µ, ω) =

N∑
j=1

w
(−α)
N,j H

(
t−αN,j

)
+

N∑
j=1

w
(−β)
N,j Y

(
t−βN,j

)
+

iπTl (µ) e
iωτ

(1 + µ)
α
(1− µ)

β
.

(27)

Theorem 3.2. ([26]). The errors approximate for the rule (27) can be estimated
by

EN [H;Y ] =Mj (α, β, l, µ, ω)−MN,j (α, β, l, µ, ω) = O
(
ω−2N−1+max{α,β}

)
, ω → ∞.

(28)

Theorem 3.3. Let α, β < 1 and FN [f ] be a polynomial approximate at the
(N+1)-Clenshaw-Curtis points. Then the error estimate for IN [f ;µ] is∣∣I1−1 [f ;µ]− IN,l [f ;µ]

∣∣ = O(1) , as ω → ∞. (29)

Proof. Let FN [f ] be an interpolating polynomial of degree N approximation to
f at Clenshaw-Curtis points and assume for simplification that p (x) = f (x) −
FN (x) and m (x) = 1

(1+x)α(1+x)β
. Then∣∣I1−1 [f ;µ]− IN,l [f ;µ]

∣∣
=

∣∣∣∣∫ 1

−1

(f(x)−FN (x))m(x)eiωxdx
(x−µ)

∣∣∣∣
=

∣∣∣∣(p (x)− p (µ))

∫ 1

−1

m(x)eiωxdx
(x−µ)

+ p (µ)

∫ 1

−1

m(x)eiωxdx
(x−µ)

∣∣∣∣
=

∣∣∣∣(p (x)− p (µ))

∫ 1

−1

m(x)eiωxdx
(x−µ)

+ p (µ)

∫ 1

−1

(m(x)−m(µ))eiωxdx
(x−µ)

+m (µ) p (µ)

∫ 1

−1

eiωxdx
(x−µ)

∣∣∣∣
≤ sup

−1≤x≤1

∣∣∣ p(x)−p(µ)
(x−µ)

∣∣∣ ∫ 1

−1
|m (x)| dx+ p (µ) sup

−1≤x≤1

∣∣∣m(x)−m(µ)
(x−µ)

∣∣∣+ |m (µ)| |p (µ)|
∣∣∣∣∫ 1

−1

eiωx

(x−µ)
dx

∣∣∣∣
=O(1) , as ω → ∞.

�
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3.4 Algorithm: Computation of (2)
Input values: α, β, ω,N, l, µ;
Output:

(1) Compute the generalized Laguerre LsN (x) roots xsN,j for s ∈ {−α,−β} ;

(2) Compute the weights for α as ω(−α)
N,j =

Γ(N+1−α)x−α
N,j

Γ(N+1)[(N+1)L−α
N+1(x

−α
N,j)]

2 , j =

1, ..., N ;

(3) Compute the weights for β as ω(−β)
N,j =

Γ(N+1−β)x−β
N,j

Γ(N+1)[(N+1)L−β
N+1(x

−β
N,j)]

2 , j =

1, ..., N ;
(4) Set N = l; compute MN,j (α, β, l, µ, ω) for j = 1, ..., N as shown in (27);
(5) If j == 0 or j == N compute 1/N otherwise 2/N ;

(6) Compute al,j for j = 0, ..., N ; If desired skip step (5) and compute a′

l,j

for j = 0, ..., N as shown in (6);
(7) Approximate IN,l for l = 0, ..., N using (7);
(8) Return IN,l (f, µ) ;

3.2. Program: MATHEMATICA program for the Algorithm (3.4).
In this sub-section, a programming code in Mathematica version 9.0 for the
automatic computation of the algorithm (3.4) presented in this paper is provided.
Moreover, in order to assess our algorithm, we will use the precision equal to 32
decimal digits. The program will also display the computation time in seconds.
FF = N[ I ∗Pi∗Exp [ I ∗ohmeg∗mu]∗

ChebyshevT [ l , mu]/ ( (1 + mu)^ a l f (1 − mu)^bt ) , dig ] ;
While [Nn < 201;

x1nodes = N[ Solve [ LaguerreL [Nn, −al f , y1 ] == 0] , dig ] ;
x11nodes = y1 /. x1nodes ;
x1N[m_] := x11nodes [ [m] ] ;
weightx1 =
Gamma[Nn + 1 − a l f ]∗

x11nodes /(Gamma[
Nn + 1]∗( (Nn + 1) LaguerreL [ (Nn + 1) , −al f , x11nodes ] ) ^2 ) ;

x2nodes = N[ Solve [ LaguerreL [Nn, −bt , y2 ] == 0] , dig ] ;
x22nodes = y2 /. x2nodes ;
x2N[m_] := x22nodes [ [m] ] ;
weightx2 =
Gamma[Nn + 1 − bt ]∗

x22nodes /(Gamma[
Nn + 1]∗( (Nn + 1) LaguerreL [ (Nn + 1) , −bt , x22nodes ] ) ^2 ) ;

weights1 [m_] := weightx1 [ [m] ] ;
weights2 [m_] := weightx2 [ [m] ] ;
M[ l_ , ohmeg_] :=

I^(− a l f + 1)∗Exp[−I ∗ohmeg]∗ohmeg^( a l f − 1)∗
Sum[ weights1 [m]∗

ChebyshevT [
l , −1 + I ∗x1N[m]/ohmeg ]/ ( (2 − I ∗x1N[m]/ohmeg)^
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bt∗(−1 + I ∗x1N[m]/ohmeg − mu) ) , {m, 1 ,
Nn}] + (−I )^(−bt + 1)∗Exp [ I ∗ohmeg]∗ohmeg^( bt − 1)∗

Sum[ weights2 [m]∗
ChebyshevT [ l ,

1 + I ∗x2N[m]/ohmeg ]/ ( (2 + I ∗x2N[m]/ohmeg)^
a l f (1 + I ∗x2N[m]/ohmeg − mu) ) , {m, 1 , Nn}] +

N[ I ∗Pi∗Exp [ I ∗ohmeg∗mu]∗
ChebyshevT [ l , mu]/ ( (1 + mu)^ a l f (1 − mu)^bt ) , dig ] ;

K[ j_ , Nn_] := I f [ j == 0 \[Or ] j == Nn, 1/Nn, 2/Nn ] ;
CK[Nn_, l_ ] :=

N[Sum[K[ j , Nn] f [ Cos [ Pi∗ j /Nn] ] ∗ Cos [ l ∗Pi∗ j /Nn] , { j , 0 , Nn} ] , dig ] ;
In l := N[

CK[Nn, 0 ]∗(M[0 , ohmeg ] ) /2 + CK[Nn, Nn]∗ (M[Nn, ohmeg ] ) /2 +
Sum[CK[Nn, l ] ∗ (M[ l , ohmeg ] ) , { l , 1 , (Nn − 1) } ] , dig ] ; ] ;

Block [{ $MaxExtraPrecision = 0} , Print [N[ Inl , dig ] ] ; A = N[ Inl , dig ] ; ] //
Timing

(∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗)
(∗∗∗ INPUT VALUES ∗∗∗)
dig = 32; (∗ Working Prec is ion for in te rna l Computation ∗)
a l f = 1/10; bet = 1/2; mu = 1/2;
omg = 1000000; (∗ Frequency ∗)
f [ t_ ] := t∗Exp [ t ^ 2 ] ; (∗Given Function ∗)
Nn = l = 24; (∗ Quadrature points ∗)
(∗∗ OUTPUT i s displayed by In l or A ∗∗)

Executing the above program with the given input values, the program will dis-
play the following output values:
−0.48335869629736102555646790702645−2.7035636805502455339230588510749i
{0.687500, Null}
The values in braces are the computation time in seconds and for the above
example, it is 0.687500 seconds. The relative error is 1.2880173x10−23. This
proves that, the algorithm presented in this paper is accurate enough to give a
16-digit accurate approximation.

4. Numerical experiments

Herein, selected numerical examples are given to test the performance of the algo-
rithm suggested for efficient computation of oscillatory integrals having Jacobi-
Cauchy type singularities. All experiments were conducted using Mathematica
version 9.0. In some examples computation time in seconds is provided. The
approximation, CPU and relative errors achieved will depend on the values of
α, β, ω, µ and N .
Example 1. We compute the integral

I1−1 (f ; τ) =

∫ 1

−1

xex
2

eiωx

(1 + x)
1/10

(1− x)
1/2 (

x− 1
2

)dx. (30)

Achieved results are summarized in Table 1.
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Table 1. Errors for the integral (30) with several values of N
and ω.

N
ω 15 22 26 30 32
5 2.6x10−8 1.7x10−10 1.0x10−10 1.9x10−11 8.6x10−12

10 4.0x10−9 3.6x10−13 5.2x10−14 4.7x10−15 1.5x10−15

50 2.2x10−10 1.6x10−14 1.2x10−17 6.5x10−22 7.2x10−23

102 6.5x10−11 1.4x10−14 1.3x10−17 1.3x10−22 6.0x10−23

104 5.1x10−14 1.1x10−14 9.7x10−18 9.3x10−26 4.5x10−23

Example 2. We consider the integral

I1−1 (f ; τ) =

∫ 1

−1

eiωx sinx

(1 + x)
1/2

(1− x)
1/4

(x− 0.32)
dx. (31)

Table 2, elaborate the obtained results.

Table 2. Errors for the integral (31) with various values of
N,ω and µ = 0, 32.

N
ω 15 20 30 40
5 2.0x10−9 9.1x10−11 4.8x10−13 5.9x10−15

10 8.9x10−13 1.1x10−14 6.2x10−15 1.1x10−20

50 3.5x10−20 7.5x10−21 7.5x10−21 7.1x10−21

102 2.5x10−20 2.8x10−24 2.8x10−24 2.8x10−24

Example 3. We compute the integral

I1−1 (f ; τ) =

∫ 1

−1

(
3x3 − 2x+ 5

)
eiωx

(1 + x)
1/100

(1− x)
1/300

(x− 3) (x− 0.4)
dx. (32)

Errors and time in seconds achieved are summarized in Table 3.

Table 3. Relative errors and computation time in seconds for
the integral (32) with N = 22.

ω Relative Errors Execution time
10 1.680x10−14 0.984
102 6.076x10−17 0.968
103 6.157x10−17 1.062
104 3.162x10−17 1.034
105 6.165x10−17 1.032
106 6.162x10−17 1.015
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Example 4. We consider the Cauchy principal value integral

I1−1 (f ; τ) =

∫ 1

−1

(x+ 1) ln (x+ 5) eiωx

(1 + x)
99/100

(1− x)
1/6

(x2 + 1) (x− 0.79)
dx. (33)

Accuracy achieved are shown in Table 4.

Table 4. Relative errors and computation time in seconds for
the integral (33) with N = 38.

ω Relative Errors Execution time
10 1.827x10−11 2.718
102 2.138x10−16 2.593
103 2.351x10−17 1.765
104 2.562x10−17 2.390
105 2.911x10−17 2.750
106 2.908x10−17 4.406

Example 5. In the bellow example we consider the following Cauchy integral

I1−1 (f ; τ) =

∫ 1

−1

fj (x) e
iωx

(1 + x)
α
(1− x)

β
(x− µ)

dx, j = 1, 2, 3, (34)

with various values of α, β, µ and N,ω are fixed. Obtained results are summa-
rized in Table 5.

Table 5. Errors for the integral (34) with various values of
α, β, µand N = 38, ω = 103.

fj (x) α β µ Relative Errors

xex

1+x2

1/4 1/3 0.54 3.49x10−15

1/100 1/100 0.5 3.51x10−15

1/10 1/2 0.5 2.03x10−15

cos x
10+x2

1/4 1/3 0.90 3.43x10−20

1/100 1/100 0.90 3.28x10−20

1/10 1/2 0.90 4.43x10−20

tan x
75+x2

1/4 1/3 0.45 4.71x10−17

1/100 1/100 0.45 2.77x10−17

1/10 1/2 0.45 4.58x10−17

Example 6. Consider the integral

I1−1 (f ; τ) =

∫ 1

−1

eiωx

(x2 + 10) (1 + x)
1/5

(1− x)
2/3

(x− 0.26)
dx. (35)

Moreover, we compare the integral (35) using two coefficients given in (5) and
(6) with various values of ω and N fixed. Results are shown in Table 6.
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Table 6. Errors for the integral (35) using coefficients (5) and
(6) with various values of ω and N fixed.

Relative Errors
µ al,j al,j

′

10 2.77x10−15 2.73x10−15

102 2.57x10−18 3.39x10−17

103 2.59x10−18 2.89x10−17

104 2.48x10−18 3.03x10−17

105 2.37x10−18 3.14x10−17

106 2.41x10−18 3.10x10−17

5. Conclusion

In this paper, we have efficiently computed oscillatory integrals having Jacobi-
Cauchy type singularities kernel using the method proposed. These types of
integrals can be found in many physical and engineering problems. The method
employed can be regarded as the application of the traditional Clenshaw-Curtis
algorithms to the oscillatory Cauchy-type singular integrals. The proposed
method exhibited the expected high accuracy and efficiency for quite small,
moderate, and large frequency values. Moreover, it can be shown that the effi-
ciency of the proposed method depends on the frequency ω and N. The given
tables illustrate the validity of the proposed method. Lastly, it has been es-
tablished that the proposed method can be also applied in the computation of
hypersingular integrals.
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