• Title/Summary/Keyword: algebraic function

Search Result 207, Processing Time 0.025 seconds

A Fixed Point Approach to the Stability of Quadratic Equations in Quasi Normed Spaces

  • Mirmostafaee, Alireza Kamel
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.691-700
    • /
    • 2009
  • We use the fixed alternative theorem to establish Hyers-Ulam-Rassias stability of the quadratic functional equation where functions map a linear space into a complete quasi p-normed space. Moreover, we will show that the continuity behavior of an approximately quadratic mapping, which is controlled by a suitable continuous function, implies the continuity of a unique quadratic function, which is a good approximation to the mapping. We also give a few applications of our results in some special cases.

Real-time Implementation of CS-ACELP Speech Coder for IMT-2000 Test-bed (IMT-2000 Test-bed 상에서 CS-ACELP 음성부호화기 실시간 구현)

  • 김형중;최송인;김재원;윤병식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.3
    • /
    • pp.335-341
    • /
    • 1998
  • In this paper, we present a real time implementation of CS-ACELP(Conjugate Structure Algebraic Code Excited Linear Prediction) speech coder. ITU-T has standardized the CS-ACELP algorithm as G.729. Areal-time implementation of CS-ACELP speech coder algorithm is achieved using 16 bit fixed-point DSP chip. To implement in fixed-point DSP Chip, integer simulation of CS-ACELP algorithm is used. Furthermore. input/output function and communication function included in CS-ACELP speech coder is described. We develope CS-ACELP speech coder in DSP evaluation board and evaluate in IMT-2000 Test-bed.

  • PDF

Precise Max-Pooling on Fully Homomorphic Encryption (완전 동형 암호에서의 정밀한 맥스 풀링 연산)

  • Eunsang Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.375-381
    • /
    • 2023
  • Fully homomorphic encryption enables algebraic operations on encrypted data, and recently, methods for approximating non-algebraic operations such as the maximum function have been studied. However, precise approximation of max-pooling operations for four or more numbers have not been researched yet. In this study, we propose a precise max-pooling approximation method using the composition of approximate polynomials of the maximum function and theoretically analyze its precision. Experimental results show that the proposed approximate max-pooling has a small amortized runtime of less than 1ms and high precision that matches the theoretical analysis.

Estimating Diameter and Height Growth for Pinus densiflora S. et Z. Using Non-linear Algebraic Difference Equations (비선형(非線型) 대수차분(代數差分) 방정식(方程式)을 이용(利用)한 소나무 직경(直徑) 및 수고(樹高) 생장(生長) 추정(推定))

  • Lee, Sang-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.2
    • /
    • pp.210-216
    • /
    • 2001
  • Pinus densiflora S. et Z. has widely been distributed, and is one of the important main foret resources in Korea. Diameter and height growth patterns were estimated using non-linear algebraic difference equation, which requires two-measurement times $T_1$ and $T_2$. To maximize data use, all possible measurement interval data were derived using Lag and Put statements in the SAS. In results, of the algebraic difference equations applied, the Schumacher and the Gompertz polymorphic equations for diameter and height, respectively showed the higher precision of the fitting. In order to allow more precise estimation of growth than those of the basic Schumacher and the Gompertz, further refinement that combine biological realism as input into the equation would be necessary.

  • PDF

Optimal Control of Nonlinear Systems Using The New Integral Operational Matrix of Block Pulse Functions (새로운 블럭펄스 적분연산행렬을 이용한 비선형계 최적제어)

  • Cho Young-ho;Shim Jae-sun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.198-204
    • /
    • 2003
  • In this paper, we presented a new algebraic iterative algorithm for the optimal control of the nonlinear systems. The algorithm is based on two steps. The first step transforms nonlinear optimal control problem into a sequence of linear optimal control problem using the quasilinearization method. In the second step, TPBCP(two point boundary condition problem) is solved by algebraic equations instead of differential equations using the new integral operational matrix of BPF(block pulse functions). The proposed algorithm is simple and efficient in computation for the optimal control of nonlinear systems and is less error value than that by the conventional matrix. In computer simulation, the algorithm was verified through the optimal control design of synchronous machine connected to an infinite bus.

The Design of MRAC using Block Pulse Functions (블럭펄스함수를 이용한 MRAC설계)

  • Kim, Jin-Tae;Kim, Tai-Hoon;Ahn, Pius;Lee, Myung-Kyu;Shim, Jae-Sun;Ahn, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2252-2254
    • /
    • 2001
  • This paper proposes a algebraic parameter determination of MRAC (Model Reference Adaptive Control) controller using block Pulse functions and block Pulse function's differential operation. Generally, adaption is performed by solving differential equations which describe adaptive low for updating controller parameter. The proposes algorithm transforms differential equations into algebraic equation, which can be solved much more easily in a recursive manner. We believe that proposes methods are very attractive and proper for parameter estimation of MRAC controller on account of its simplicity and computational convergence.

  • PDF

An Approach to Walsh Functions for Parameter Estimation of Distributed Parameter Systems (WALSH함수의 접근에 의한 분포정수계의 파라메타 추정)

  • 안두수;배종일
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.7
    • /
    • pp.740-748
    • /
    • 1990
  • In this paper, we consider the problem of parameter estimation, i.e., definding the internal structure of a linear distribution parameter system from its input/output data. First, a linear partial differential equation describing the system is double-integrated with respect to two variables and then transformed into an integral equation. Next the Walsh Operation Matrix for Walsh function and their integration are introduced to transform the integral equation into algebraic simultaneous equations. Finally, we develop an algorithm to estimate the parameters of the linear distributed parameter system from the simple linear algebraic simultaneous equations. It is also shown that our algorithm could be effective in real time data processing since it uses the Fast Walsh Transform.

  • PDF

A Computer Oriented Solution for the Fractional Boundary Value Problem with Fuzzy Parameters with Application to Singular Perturbed Problems

  • Asklany, Somia A.;Youssef, I.K.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.223-227
    • /
    • 2021
  • A treatment based on the algebraic operations on fuzzy numbers is used to replace the fuzzy problem into an equivalent crisp one. The finite difference technique is used to replace the continuous boundary value problem (BVP) of arbitrary order 1<α≤2, with fuzzy boundary parameters into an equivalent crisp (algebraic or differential) system. Three numerical examples with different behaviors are considered to illustrate the treatment of the singular perturbed case with different fractional orders of the BVP (α=1.8, α=1.9) as well as the classical second order (α=2). The calculated fuzzy solutions are compared with the crisp solutions of the singular perturbed BVP using triangular membership function (r-cut representation in parametric form) for different values of the singular perturbed parameter (ε=0.8, ε=0.9, ε=1.0). Results are illustrated graphically for the different values of the included parameters.

A Study on the Teaching and Learning Method of Simultaneous Quadratic Equations Using GeoGebra (GeoGebra를 활용한 연립이차방정식 교수.학습 방안 연구)

  • Yang, Seong Hyun
    • East Asian mathematical journal
    • /
    • v.37 no.2
    • /
    • pp.265-288
    • /
    • 2021
  • In the 2015 revised mathematics curriculum, the system of equations is first introduced in 'Variables and Expressions' of [Middle School Grades 1-3]. Then, It is constructed that after learning the linear function in 'Functions', the relationship between the graphs of two linear functions and the systems of linear equations are learned so that students could improve the geometric representation of the systems of equations. However, in of Elective-Centered Curriculum Common Courses, Instruction is limited to algebraic manipulation when teaching and learning systems of quadratic equations. This paper presented the teaching and learning method that can improve students' mathematical connection through various representations by providing geometric representations in parallel using GeoGebra, a mathematics learning software, with algebraic solutions in the teaching and learning situation of simultaneous quadratic equations.

$Gr\ddot{o}bner$ basis versus indicator function (그뢰브너 기저와 지시함수와의 관계)

  • Kim, Hyoung-Soon;Park, Dong-Kwon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1015-1027
    • /
    • 2009
  • Many problems of confounding and identifiability for polynomial models in an experimental design can be solved using methods of algebraic geometry. The theory of $Gr\ddot{o}bner$ basis is used to characterize the design. In addition, a fractional factorial design can be uniquely represented by a polynomial indicator function. $Gr\ddot{o}bner$ bases and indicator functions are powerful computational tools to deal with ideals of fractions based on each different theoretical aspects. The problem posed here is to give how to move from one representation to the other. For a given fractional factorial design, the indicator function can be computed from the generating equations in the $Gr\ddot{o}bner$ basis. The theory is tested using some fractional factorial designs aided by a modern computational algebra package CoCoA.

  • PDF