• Title/Summary/Keyword: algebraic function

검색결과 207건 처리시간 0.025초

분산형 볼륨 데이터의 VNURBS 기반 다중 잔차 근사법 (Multiresidual approximation of Scattered Volumetric Data with Volumetric Non-Uniform Rational B-Splines)

  • 박상근
    • 한국CDE학회논문집
    • /
    • 제12권1호
    • /
    • pp.27-38
    • /
    • 2007
  • This paper describes a multiresidual approximation method for scattered volumetric data modeling. The approximation method employs a volumetric NURBS or VNURBS as a data interpolating function and proposes two multiresidual methods as a data modeling algorithm. One is called as the residual series method that constructs a sequence of VNURBS functions and their algebraic summation produces the desired approximation. The other is the residual merging method that merges all the VNURBS functions mentioned above into one equivalent function. The first one is designed to construct wavelet-type multiresolution models and also to achieve more accurate approximation. And the second is focused on its improvement of computational performance with the save fitting accuracy for more practical applications. The performance results of numerical examples demonstrate the usefulness of VNURBS approximation and the effectiveness of multiresidual methods. In addition, several graphical examples suggest that the VNURBS approximation is applicable to various applications such as surface modeling and fitting problems.

V노치 또는 예리한 균열을 가지는 직사각형 평판의 굽힘 진동 (Flexural Vibrations of Rectangular Plates Having V-notches or Sharp Cracks)

  • 정희영;정의영;김주우
    • 한국소음진동공학회논문집
    • /
    • 제14권4호
    • /
    • pp.336-343
    • /
    • 2004
  • This paper reports the first known free vibration data for thin rectangular plates with V-notches. The classical Ritz method is employed with two sets of admissible functions assumed for the transverse vibratory displacements. These sets include (1) mathematically complete algebraic-trigonometric polynomials which guarantee convergence to exact frequencies as sufficient terms are retained, and (2) corner functions which account for the bending moment singularities at the sharp reentrant corner of the Y-notch. Extensive convergence studies summarized herein confirm that the corner functions substantially enhance the convergence and accuracy of nondirectional frequencies for rectangular plates having the V-notch. In this paper, accurate frequencies and normalized contours of vibratory transverse displacement are presented for various notched plates, so that the effect of corner stress singularities may be understood.

A simplified matrix stiffness method for analysis of composite and prestressed beams

  • Deretic-Stojanovic, Biljana;Kostic, Svetlana M.
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.53-63
    • /
    • 2017
  • The paper presents the simplified matrix stiffness method for analysis of composite and prestressed beams. The method is based on the previously developed "exact" analysis method that uses the mathematical theory of linear integral operators to derive all relations without any mathematical simplifications besides inevitable idealizations related to the material rheological properties. However, the method is limited since the closed-form solution can be found only for specific forms of the concrete creep function. In this paper, the authors proposed the simplified analysis method by introducing the assumption that the unknown deformations change linearly with the concrete creep function. Adopting this assumption, the nonhomogeneous integral system of equations of the "exact" method simplifies to the system of algebraic equations that can be easily solved. Therefore, the proposed method is more suitable for practical applications. Its high level of accuracy in comparison to the "exact" method is preserved, which is illustrated on the numerical example. Also, it is more accurate than the well-known EM method.

DOMAIN OF EULER-TOTIENT MATRIX OPERATOR IN THE SPACE 𝓛p

  • Demiriz, Serkan;Erdem, Sezer
    • Korean Journal of Mathematics
    • /
    • 제28권2호
    • /
    • pp.361-378
    • /
    • 2020
  • The most apparent aspect of the present study is to introduce a new sequence space 𝚽(𝓛p) derived by double Euler-Totient matrix operator. We examine its topological and algebraic properties and give an inclusion relation. In addition to those, the α-, β(bp)- and γ-duals of the space 𝚽(𝓛p) are determined and finally, some 4-dimensional matrix mapping classes related to this space are characterized.

Configuration Space 접근법을 이용한 여유 자유도 로봇의 자기 충돌 회피 (Self-Collision Avoidance using Configuration Space Approach for Redundant Manipulators)

  • 문재성;정완균;염영일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.321-324
    • /
    • 2003
  • There are two steps to solve the self-collision avoidance problems for redundant manipulators. First, all links are regarded as cylinders. and then the collisions should be checked among all pairs of the links. Between two cylinders. we can get the collision information derived from the concept or configuration space obstacle in real time. Therefore. it is possible to detect the links where collisions are likely in real time by setting the risk radius which is larger than actual radius. Second. the configuration control points (CCP) should be placed at the ends of the detected links. A cost function is the sum of the distances between the CCPs. To maximize the cost function means the links go far away each other without self-collisions.

  • PDF

A Tuning Algorithm for LQ-PID Controllers using the Combined Time - and Frequency-Domain Control Method

  • Kim, Chang-Hyun;Lee, Ju;Lee, Hyung-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1244-1254
    • /
    • 2015
  • This paper proposes a new method for tuning a linear quadratic - proportional integral derivative controller for second order systems to simultaneously meet the time and frequency domain design specifications. The suitable loop-shape of the controlled system and the desired step response are considered as specifications in the time and frequency domains, respectively. The weighting factors, Q and R of the LQ controller are determined by the algebraic Riccati equation with respect to the limiting behavior and target function matching. Numerical examples show the effectiveness of the proposed LQ-PID tuning method

그린 함수를 이용한 가선-판토그래프 계의 운동해석 (Analysis of Catenary-Pantograph Motion by Green's Function)

  • 임진수
    • 대한기계학회논문집
    • /
    • 제16권8호
    • /
    • pp.1438-1445
    • /
    • 1992
  • 본 연구에서는 그린(green)의 함수를 사용한 가선-판토그래프 계 운동 해석 방법을 개발하였다. 이 방법은 집중질량 방법이나 모우드 해석법에 비하여 더욱 해 석적이며, 모우드 해석법과는 달리 고유 진동수나 진동형의 계산이 필요하지 않다.

역모델을 이용한 MR 댐퍼의 감쇠계수 제어 (Control of Damping Coefficients for the Shear Mode MR Dampers Using Inverse Model)

  • 나언주
    • 한국소음진동공학회논문집
    • /
    • 제23권5호
    • /
    • pp.445-455
    • /
    • 2013
  • A new linearization model for MR dampers is analyzed. The nonlinear hysteretic damping force model of MR damper can be modeled as a hyperbolic tangent function of currents, positions, and velicities, which is an algebraic function with constant parameters. Model parameters can be identified with numerical method using experimental force-velocity-position data obtained from various operating conditions. The nonlinear hysteretic damping force can be linearized with a given slope of damping coefficient if there exist corresponding currents to compensate for the nonlinearity. The corresponding currents can be calculated from the inverse model when the given linear damping force is set equal to the nonlinear hysteretic damping force. The linearization controller is realized in a DSP controller such that the corresponding currents to satisfy a given damping coefficient should be calculated. Experiments show that the current inputs to the MR damper produce linearized damping force with a given slope of the damping coefficient.

CFD 를 이용한 선미선형 최적화 기법 개발 (Development of CFD Based Stern Form Optimization Method)

  • 김희정;전호환;최희종
    • 대한조선학회논문집
    • /
    • 제44권6호
    • /
    • pp.564-571
    • /
    • 2007
  • In the present study, stern form optimization has been carried out using computational fluid dynamics (CFD) techniques. The viscous pressure drag has been minimized to optimize stern shape. Parametric modification function has been used to modify the shape of the hull. By the use of the parametric modification function and algebraic scheme to grid manipulation, the initial ship geometry was easily deformed according to change of design parameters. For purpose of illustration, KRISO 319K VLCC (KVLCC) is chosen for example ship to demonstrate stern form optimization. The numerical results indicate that the optimized hull yields a reduction in viscous resistance.

Harltley 함수를 이용한 선형시스템의 상태해석에 관한 연구 (Study for State Analysis of Linear Systems by using Hartley Functions)

  • 김범수;민치현
    • 제어로봇시스템학회논문지
    • /
    • 제18권9호
    • /
    • pp.806-811
    • /
    • 2012
  • In this paper Hartley functions are used to approximate the solutions of continuous time linear dynamical system. The Hartley function and its integral operational matrix are first presented, an efficient algorithm to solve the Stein equation is proposed. The algorithm is based on the compound matrix and the inverse of sum of matrices. Using the structure of the Hartley's integral operational matrix, the full order Stein equation should be solved in terms of the solutions of pure algebraic matrix equations, which reduces the computation time remarkably. Finally a numerical example is illustrated to demonstrate the validity of the proposed algorithm.