• 제목/요약/키워드: algebra of derivations

검색결과 168건 처리시간 0.022초

DERIVATIONS OF A NON-ASSOCIATIVE GROWING ALGEBRA

  • Choi, Seul Hee
    • 호남수학학술지
    • /
    • 제40권2호
    • /
    • pp.227-237
    • /
    • 2018
  • There are various papers on finding all the derivations of a non-associative algebra and an anti-symmetrized algebra. We find all the derivations of a growing algebra in the paper. The dimension of derivations of the growing algebra is one and every derivation of the growing algebra is outer. We show that there is a class of purely outer algebras in this work.

DERIVATIONS OF A RESTRICTED WEYL TYPE ALGEBRA ON A LAURENT EXTENSION

  • Choi Seul-Hee
    • 대한수학회논문집
    • /
    • 제21권2호
    • /
    • pp.227-236
    • /
    • 2006
  • Several authors find all the derivations of an algebra [1], [3], [7]. A Weyl type non-associative algebra and its sub algebra are defined in the paper [2], [3], [10]. All the derivations of the non-associative algebra $\overline{WN_{0,0,s1}$ is found in this paper [4]. We find all the derivations of the non-associative algebra $\overline{WN_{0,s,01}$ in this paper [5].

DERIVATIONS OF A COMBINATORIAL LIE ALGEBRA

  • Choi, Seul Hee
    • 호남수학학술지
    • /
    • 제36권3호
    • /
    • pp.493-503
    • /
    • 2014
  • We consider the simple antisymmetrized algebra $N(e^{A_P},n,t)_1^-$. The simple non-associative algebra and its simple subalgebras are defined in the papers [1], [3], [4], [5], [6], [8], [13]. Some authors found all the derivations of an associative algebra, a Lie algebra, and a non-associative algebra in their papers [2], [3], [5], [7], [9], [10], [13], [15], [16]. We find all the derivations of the Lie subalgebra $N(e^{{\pm}x_1x_2x_3},0,3)_{[1]}{^-}$ of $N(e^{A_p},n,t)_k{^-}$ in this paper.

JORDAN HIGHER DERIVATIONS ON TRIVIAL EXTENSION ALGEBRAS

  • Vishki, Hamid Reza Ebrahimi;Mirzavaziri, Madjid;Moafian, Fahimeh
    • 대한수학회논문집
    • /
    • 제31권2호
    • /
    • pp.247-259
    • /
    • 2016
  • We first give the constructions of (Jordan) higher derivations on a trivial extension algebra and then we provide some sufficient conditions under which a Jordan higher derivation on a trivial extension algebra is a higher derivation. We then proceed to the trivial generalized matrix algebras as a special trivial extension algebra. As an application we characterize the construction of Jordan higher derivations on a triangular algebra. We also provide some illuminating examples of Jordan higher derivations on certain trivial extension algebras which are not higher derivations.

NOTES ON AN ALGEBRA WITH SCALAR DERIVATIONS

  • Choi, Seul Hee
    • 호남수학학술지
    • /
    • 제36권1호
    • /
    • pp.179-186
    • /
    • 2014
  • In this paper, we consider the simple non-associative algebra $\overline{WN(\mathbb{F}[e^{{\pm}x^r},0,1]_{(\partial,\partial^2)})}$. There are many papers on finding the derivations of an associative algebra, a Lie algebra, and a non-associative algebra (see [2], [3], [4], [5], [6], [7], [12], [14]). We find all the derivations of the algebra $\overline{WN(\mathbb{F}[e^{{\pm}x^r},0,1]_{(\partial,\partial^2)})}$.

A NOTE ON A WEYL-TYPE ALGEBRA

  • Fernandez, Juan C. Gutierrez;Garcia, Claudia I.
    • 호남수학학술지
    • /
    • 제38권2호
    • /
    • pp.269-277
    • /
    • 2016
  • In a paper of S. H. Choi [2], the author studied the derivations of a restricted Weyl Type non-associative algebra, and determined a 1-dimensional vector space of derivations. We describe all the derivations of this algebra and prove that they form a 3-dimensional Lie algebra.

THE IMAGES OF LOCALLY FINITE 𝓔-DERIVATIONS OF POLYNOMIAL ALGEBRAS

  • Lv, Lintong;Yan, Dan
    • 대한수학회보
    • /
    • 제59권1호
    • /
    • pp.73-82
    • /
    • 2022
  • Let K be a field of characteristic zero. We first show that images of the linear derivations and the linear 𝓔-derivations of the polynomial algebra K[x] = K[x1, x2, …, xn] are ideals if the products of any power of eigenvalues of the matrices according to the linear derivations and the linear 𝓔-derivations are not unity. In addition, we prove that the images of D and 𝛿 are Mathieu-Zhao spaces of the polynomial algebra K[x] if D = ∑ni=1 (aixi + bi)∂i and 𝛿 = I - 𝜙, 𝜙(xi) = λixi + 𝜇i for ai, bi, λi, 𝜇i ∈ K for 1 ≤ i ≤ n. Finally, we prove that the image of an affine 𝓔-derivation of the polynomial algebra K[x1, x2] is a Mathieu-Zhao space of the polynomial algebra K[x1, x2]. Hence we give an affirmative answer to the LFED Conjecture for the affine 𝓔-derivations of the polynomial algebra K[x1, x2].

ON LEFT DERIVATIONS OF BCH-ALGEBRAS

  • Kim, Kyung Ho;Lee, Yong Hoon
    • Korean Journal of Mathematics
    • /
    • 제25권2호
    • /
    • pp.163-179
    • /
    • 2017
  • In this paper, we introduce the notion of left derivations of BCH algebras and investigate some properties of left derivations in a BCH-algebra. Moreover, we introduce the notions of fixed set and kernel set of derivations in a BCH-algebra and obtained some interesting properties in medial BCH-algebras. Also, we discuss the relations between ideals in a medial BCH-algebras.