• Title/Summary/Keyword: algal inhibition

Search Result 63, Processing Time 0.019 seconds

Growth Inhibition of Toxic Cyanobacterium Microcystis aeruginosa by Various SNPs (Silver Nanoparticles) (여러 가지 은나노 물질의 유해 남조 Microcystis aeruginosa 생장억제)

  • Park, Myung-Hwan;Kim, Keun-Hee;Lee, Huk-Hee;Kim, Jin-Seog;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.75-84
    • /
    • 2009
  • The effect of various SNPs (silver nanoparticles) on the growth of Microcystis aeruginosa was investigated in laboratory and field experiment. Four SNPs, namely JS47N, JS47N-K2, JS47N/3-1 and JS47N/3-2 were used to this study. The Ag size, concentration and color of these solutions were about $20{\sim}40nm$, $200mg\;L^-1$ and brown, respectively. At 0.01 and $0.1mg\;L^-1$, SNPs inhibited the growth of unicellular M. aeruginosa by 99.4% and 99.9%, respectively. However, SNPs of $1mg\;L^-1$ inhibited the growth of colonial M. aeruginosa by 98.5%, whereas the other three concentrations (0.001, 0.01 and $0.1mg\;L^-1$) had little inhibitory effect. In experimental enclosures from eutrophic lake, cyanobacteria including M. aeruginosa were found to be more sensitive to the SNPs than green algae and diatoms. In conclusion, our study indicates that SNPs has a selective cyanocidal potential when used to M. aeruginosa. We believe that future studies need to test on various other organisms, and determine minimum concentration for field application.

Antioxidant, anti-inflammatory, and antibacterial activities of a 70% ethanol-Symphyocladia linearis extract

  • Jeong Min Lee;Mi-Jin Yim;Hyun-Soo Kim;Seok-Chun Ko;Ji-Yul Kim;Gun-Woo Oh;Kyunghwa Baek;Dae-Sung Lee
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.11
    • /
    • pp.579-586
    • /
    • 2022
  • Research on the potential biological activity of red alga Symphyocladia spp. has been limited to Symphyocladia latiuscula, which is widely used as a food ingredient in Korea. Here, we examined the biological activity of another species, Symphyocladia linearis, which is found in Korea and was reported as a new species in 2013. The aim of this study was to evaluate the antioxidant, anti-inflammatory, and antibacterial properties of a 70% ethanol extract of S. linearis. Antioxidant activity, which was evaluated using radical scavenging assays, revealed half maximal inhibitory concentration values for 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) of 34.57 and 11.70 ㎍/mL algal extract, respectively. Anti-inflammatory activity of the S. linearis ethanolic extract was evaluated using RAW 264.7 cells by measuring the inhibition of lipopolysaccharide-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. The potential cytotoxicity of NO and PGE2 was first examined, confirming no toxicity at concentrations ranging from 10-100 ㎍/mL. NO production was inhibited 61.1% and 78.0% at 50 and 100 ㎍/mL S. linearis extract, respectively; and PGE2 production was inhibited 69.1%, 83.2%, and 94.8% at 25, 50, and 100 ㎍/mL S. linearis extract, respectively. Thus, the S. linearis extract showed very strong efficacy against PGE2 production. The cellular production of reactive oxygen species, measured using 2',7'-dichlorofluorescin diacetate fluorescence, was inhibited 48.8% by the addition of 100 ㎍/mL S. linearis extract. Antibacterial activity was evaluated using the disc diffusion method and minimum inhibitory concentration (MIC). S. linearis was effective only against gram-positive bacteria, exhibiting antibacterial activity against Staphylococcus aureus with a MIC of 256 ㎍/mL extract and against Bacillus cereus with a MIC of 1,024 ㎍/mL extract. Based on these results, we infer that a 70% ethanolic extract of S. linearis possesses strong anti-inflammatory properties, and therefore has the potential to be used in the prevention and treatment of inflammatory and immune diseases.

Short-Term Nutrient Enrichment Bioassays and Nutrient Limitation in Daechung Reservoir (대청호에서의 단기 영양염 첨가 실험 및 제한 영양염류 분석)

  • Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.136-141
    • /
    • 2010
  • In situ experiments of Nutrient Enrichment Bioassays (NEBs) were conducted in the field along with in the laboratory to determine which nutrient limited phytoplankton growth as a indicator of primary productivity. For the NEBs, the water was sampled using a polyethylene-lined container and dispensed into 6 L water tank in the laboratory. The control (C, no nutrient spike) and six treatments of phosphorus (P), 2-fold phosphorus (2P), 4-fold phosphorus (4P), nitrate nitrogen ($NO_3$-N), 2-fold nitrate nitrogen ($2NO_3$-N), and phosphorus and nitrate nitrogen (P+$NO_3$-N) were set up in the lacustrine zone near the dam site, Daechung Reservoir in September, 2009 and analyzed the diel changes of total nitrogen (TN), total phosphorus (TP), and chlorophyll-$\alpha$ (Chl-$\alpha$) in the cubitainers. The short-term NEBs showed that algal response in the treatments spiked phosphorus (P, 2P, and 4P) were significantly (p < 0.05) greater than the response in the control (C), and nitrogen-spike. Also, the response in 4P-treatment was greater than those in the P- and 2P-treatments. In contrast, there was no significant differences (p > 0.20) between the $NO_3$-N and $2NO_3$-N treatment. The outcomes of the NEBs suggest that phosphorus limited the phytoplankton growth and nitrogen was not limited in this system. Furthermore, in the N + P treatments, the response was minimum, compared to all other treatments and the control, indicating that even if the system is evidently P-limited system, when added the nitrogen, the response showed the inhibition. Also, > 95% of observed long-term TN:TP ratios in the ambient water showed > 17, which is the criteria of P-limitation, supporting the P-limitation in the system. Overall, these results suggest that phytoplankton biomass near the dam is a direct linear function of P-loading near the watershed, if the phosphorus pool is mainly dissolved fraction.