Growth Inhibition of Toxic Cyanobacterium Microcystis aeruginosa by Various SNPs (Silver Nanoparticles)

여러 가지 은나노 물질의 유해 남조 Microcystis aeruginosa 생장억제

  • Park, Myung-Hwan (Department of Environmental Science, Konkuk University) ;
  • Kim, Keun-Hee (Department of Environmental Science, Konkuk University) ;
  • Lee, Huk-Hee (Environment and Energy Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Jin-Seog (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University)
  • 박명환 (건국대학교 환경과학과) ;
  • 김건희 (건국대학교 환경과학과) ;
  • 이혁희 (한국화학연구원 환경에너지센터) ;
  • 김진석 (한국화학연구원 신화학연구단) ;
  • 황순진 (건국대학교 환경과학과)
  • Published : 2009.03.31

Abstract

The effect of various SNPs (silver nanoparticles) on the growth of Microcystis aeruginosa was investigated in laboratory and field experiment. Four SNPs, namely JS47N, JS47N-K2, JS47N/3-1 and JS47N/3-2 were used to this study. The Ag size, concentration and color of these solutions were about $20{\sim}40nm$, $200mg\;L^-1$ and brown, respectively. At 0.01 and $0.1mg\;L^-1$, SNPs inhibited the growth of unicellular M. aeruginosa by 99.4% and 99.9%, respectively. However, SNPs of $1mg\;L^-1$ inhibited the growth of colonial M. aeruginosa by 98.5%, whereas the other three concentrations (0.001, 0.01 and $0.1mg\;L^-1$) had little inhibitory effect. In experimental enclosures from eutrophic lake, cyanobacteria including M. aeruginosa were found to be more sensitive to the SNPs than green algae and diatoms. In conclusion, our study indicates that SNPs has a selective cyanocidal potential when used to M. aeruginosa. We believe that future studies need to test on various other organisms, and determine minimum concentration for field application.

여러 가지 은나노물질(SNPs)의 M. aeruginosa 생장에 대한 영향을 실내, 외 실험을 통해 조사하였다. 제조된 4가지 SNPs는 농도 $200mg\;L^-1$, 입자크기 $20{\sim}40nm$, 갈색 Ag로서의 수용액이었으며 이 용액들을 각각 실험에 사용하였다. SNPs는 unicellular M. aeruginosa에 대하여 0.01, $0.1mg\;L^-1$의 첨가농도에서 각각 99.4%, 99.9%의 조류 생장억제 효과를 나타냈으며, colonial M. aeruginosa에 대하여는 여러 가지 농도 중 $1mg\;L^-1$의 농도에서 가장 높은 생장억제 효과(98.5%)를 나타냈다. 더욱이 부영양화한 현장에서 SNPs를 첨가한 enclosure 실험을 통해 M. aeruginosa에 대한 선택적 제어 가능성이 시사되었다. 본 연구를 통해서 향후 SNPs를 더욱 보완하면 M. aeruginosa를 비롯한 유해 남조의 선택적 제어에 좀더 효과적일 것으로 판단된다.

Keywords

References

  1. 김건희, 김백호, 박명환, 황순진. 2008. 담수패류(Unio douglasiae)와 침수식물 (Potamogeton crispus)의 유해 남조 Oscillatoria sp. 성장억제 효과. 한국하천호수학회지 41: 68-76
  2. 김백호, 최민규, 황수옥, 高村典子. 2000. 부영양호의 enclosure내에서 어류의 밀도조절이 수질 및 플랑크톤 군집에 미치는 영향. 한국육수학회지 33: 358-365
  3. 박명환. 2005. 담수산 유해조류의 발생기작 및 조류 제어에 관한 연구. 한양대학교 대학원 박사학위논문. 194 pp
  4. 박명환, 이석준, 윤병대, 오희목. 2001. 규산질다공체와 미생물 응집제의 녹조제어 효과. 환경생물 19: 129-135
  5. 최강국, 이상훈, 배기서, 신재기, 오희목. 2008. 은이온 수용액의 Microcystis 생장억제 효과. 환경생물 26: 183-191
  6. Adamson, R.P. and M.R. Sommerfeld. 1980. Laboratory comparison of the effectiveness of several algicides on isolated swimming pool algae. Applied and Environmental Microbiology 39: 348-353
  7. Ahn, C.Y., M.H. Park, S.H. Joung, H.S. Kim, K.Y. Jang and H.M. Oh. 2003. Growth inhibition of cyanobacteria by ultrasonic radiation: laboratory and enclosure studies. Environmental Science and Technology 37: 3031-3037 https://doi.org/10.1021/es034048z
  8. Albrecht, M.A., C.W. Evan and C.L. Raston. 2006. Green chemistry and the health implications of nanoparticles. Green Chemistry 8: 417-432 https://doi.org/10.1039/b517131h
  9. Allen, M.M. 1968. Simple conditions for the growth of unicellular blue-green algae on plates. Journal of Phycology 4: 1-4
  10. APHA. 1995. Standard methods for the examination of water and wastewater. 19th ed. American Public Health Association, Washington, DC., USA
  11. Butkus, M.A., L. Edling and M.P. Labare. 2003. The efficacy of silver as a bactericidal agent: advantages, limitations and considerations for future use. Journal of Water Supply: Research and Technology-AQUA 52: 407-416
  12. Choi, O., K.K. Deng, N.J. Kim, L. Ross Jr., R.Y. Surampallie and Z. Hu. 2008. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Research 42: 3066-3074 https://doi.org/10.1016/j.watres.2008.02.021
  13. DeMott, W.R., Q.X. Zhang and W.W. Carmichael. 1991. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species ofDaphnia. Limnology and Oceanography 36: 1346-1357 https://doi.org/10.4319/lo.1991.36.7.1346
  14. DeZuane, J. 1997. Handbook of Drinking Water Quality. An International Thomson Publing Company, New York
  15. Eloff, J.N. and A.J. Van der Westhuizer. 1981. The water environment: algal toxins and health. Plenum Press, New York
  16. Gong, P., H. Li, X. He, K. Wang, J. Hu, W. Tan, S. Zhang and X. Yang. 2007. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18: 285604 (7pp)
  17. Gross, E.M. 2003. Allelopathy of aquatic autotrophs. Critical Reviews in Plant Sciences 22: 313-339 https://doi.org/10.1080/713610859
  18. Kaplan, D., N.T. Prakash and A. Abeliovich. 1998. Glutathione-induced recovery in Chlorella cells from metal toxicity. Fresenius Environmental Bulletin 7: 153-159
  19. Kaya, K., Y.D. Liu, Y.W. Shen, B.D. Xiao and T. Sano. 2005. Selective control of toxic Microcystis water blooms using lysine and malonic acid: an enclosure experiment. Environmental Toxicology 20: 170-178 https://doi.org/10.1002/tox.20092
  20. Kim, H.S., S.J. Hwang, J.K. Shin, K.G. An and C.G. Yoon. 2007. Effects of limiting nutrients and N : P ratios on the phytoplankton growth in a shallow hypertrophic reservoir. Hydrobiologia 581: 255-267 https://doi.org/10.1007/s10750-006-0501-9
  21. Kiviranta, J., K. Sivonen, S.I. Niemela and K. Huovinen. 1991. Detection of toxicity of cyanobacteria by Artemia salina bioassay. Environmental Toxicology and Water Quality 6: 423-436 https://doi.org/10.1002/tox.2530060407
  22. Lee, D.Y., C. Fortin and P.G.C. Campbell. 2005. Contrasting effects of chloride on the toxicity of silver to two green algae, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. Aquatic Toxicology 75: 127-135 https://doi.org/10.1016/j.aquatox.2005.06.011
  23. Lorenzen, C.J. 1967. Determination of chlorophyll and pheopigments: spectrophotometric equation. Limnology and Oceanography 12: 343-346 https://doi.org/10.4319/lo.1967.12.2.0343
  24. Penaloza, R., M. Rojas, I. Vila and F. Zambrano. 1990. Toxicity of a soluble peptide from Microcystis sp. to zooplankton and fish. Freshwater Biology 24: 233-240 https://doi.org/10.1111/j.1365-2427.1990.tb00705.x
  25. Rai, M., A. Yadav and A. Gade. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 27: 76-83 https://doi.org/10.1016/j.biotechadv.2008.09.002
  26. Reinikainen, M., M. Ketola and M. Walls. 1994. Effects of the concentrations of toxic Microcystis aeruginosa and an alternative food on the survival of Daphnia pulex. Limnology and Oceanography 39: 424-432 https://doi.org/10.4319/lo.1994.39.2.0424
  27. Schrader, K.K. 2000. Evaluation of limnocorrals for studying the effects of phytotoxic compounds on plankton and water chemistry in aquaculture ponds. Journal of the World Aquaculture Society 31: 403-415 https://doi.org/10.1111/j.1749-7345.2000.tb00890.x
  28. Scragg, A.H. and C. Bonnett. 2002. Inhibition of microalgal growth by silver nitrate. Biotechnology Letters 24: 169-172 https://doi.org/10.1023/A:1014181702460
  29. Shirai, M., A. Ohtake, T. Sano, S. Matsumoto, T. Sakamoto, A. Sato, T. Aida, K. Harada, T. Shimada and M. Suzuki. 1991. Toxicity and toxins of natural blooms and isolated strains of Microcystis spp. (Cyanobacteria) and improved procedure for purification of cultures. Applied and Environmental Microbiology 57: 1241-1245
  30. Smith, V.H. 1983. Low nitrogen to phosphorus ratios favors dominance by blue-green algae in lake phytoplankton. Science 221: 669-671 https://doi.org/10.1126/science.221.4611.669
  31. Tucker, C.S., R.L. Busch and S.W. Lloyd. 1983. Effects of simazine treatment on channel catfish production and water quality in ponds. Journal of Aquatic Plant Management 21: 7-11
  32. WHO. 2004. Guidelines for Drinking Water Quality. World Health Organization, Geneva, Switzerland
  33. Xie, L., P. Xie, S. Li, H. Tang and H. Liu. 2003. The low TN : TP ratio, a cause or a result of Microcystis blooms. Water Research 37: 2073-2080 https://doi.org/10.1016/S0043-1354(02)00532-8