• Title/Summary/Keyword: alcohol flooding

Search Result 6, Processing Time 0.02 seconds

The Effects of Calcium Nutrition on the Activities of Lactate Dehydrogenase, Alcohol Dehydrogenase and Other Enzymes in Melon (Cucumis melo L.) Seedlings Subjected to Flooding

  • Lee, Chang-Hee;Park, Man;Kang, Sang-Jae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.36-43
    • /
    • 2016
  • With transient flooding followed by poor or slow drainage plant roots may become reduction conditions because the root zone was fully filled with water. This study was examined the effects of calcium treatment in the early growth stage on biochemical changes in leaves and roots of melon (Cucumis melo L.) seedlings kept under flooding condition for 72 h. The activities of lactate dehydrogenase more gradually enhanced in the roots than those of leaves of melon seedlings treated with calcium. The activities of alcohol dehydrogenase associated with alcohol fermentation under low oxygen conditions continuously increased in the leaves and roots of seedlings untreated with calcium under flooding at least 72 h but those was constant within at least 12 h in treated with calcium. These results showed that calcium supplying in the early growth stage mitigated alcohol fermentation of melon seedlings kept under flooding condition for 72 h. Activities of nitrate reductase and acid phosphatase in the leaves and roots of seedlings in treated with calcium somewhat higher than those of non-treated with calcium. The activities of sucrose phosphate synthase and fructose-1,6-bisphosphatase of leaves of seedlings in treated with calcium more higher than those of non-treated with calcium. These results indicated that calcium nutrition mitigate the reduction of activities of some enzymes of melon seedling kept under flooding condition for 72 h.

Removal of Benzene-Nonaqueous Phase liquid(NAPL) in Soil Tank by NAPL Swelling and Non-swelling alcohols (토양 탱크에서 흡수 알코올과 비흡수 알코올을 이용한 벤젠-비수용상액체 제거 연구)

  • Song, Chung-Hyun;Jeong, Seung-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.40-47
    • /
    • 2009
  • Coinjection of alcohol and air or alcohol flooding only were evaluated with 3-D soil tank for removal of nonaqueous phase liquid (NAPL) contaminant from soil. 70%-ethanol and 40%-isopropanol were used for non-NAPL-swelling alcohol and NAPL-swelling alcohol, respectively. 729 ml-benzene was placed in the 37 liter soil tank. Alcohols were respectively injected from the injection well placed near the bottom of the tank and mobilized free phase NAPL and aqueous phases were then recovered from the extraction well placed in the upper part of the soil tank. Approximately 50% of removed NAPLs were free-phase in all experiments. The results were completely different to the previous soil column experiment results and also implied that alcohol properties did not affect the NAPL removal efficiency in the 3-D soil tank experiment. Air was also co-injected with alcohol to evaluate co-injection effects on NAPL removal. Enhanced NAPL removal effect of co-injection of 70%-ethanol and air was also found even in the 3-D soil tank evaluation. However, co-injection effect of 40%-iso-propanol and air was less apparent. This study determined that the most important parameter governing alcohol flooding for NAPL removal would be extraction capacity to recover NAPL and aqueous phase flowing in the soil. More researches are required for improving recovery efficiency of extraction well in real soil contamination conditions.

Removal of Benzene-NAPL in Soil Column by Cosolvent Flooding (Cosolvent에 의한 토양 내 Benzene-NAPL 세정 연구)

  • Song, Chung-Hyun;Jeong, Seung-Woo;Lee, Byung-Jin;Go, Sung-Hwan
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.45-51
    • /
    • 2008
  • Removal of nonaqueous phase liquid present in the soil column by using cosolvent floods was investigated. The first objective of the study was to elucidate the removal mechanism of cosolvent flooding for benzene-NAPL. The second objective of the study was to evaluate the effects of the alchohol partitioning type (NAPL swelling and non-swelling) and concentration on NAPL removal efficiency from the soil column. The main NAPL removal mechanism of swelling alcohol was mobilization, while that of non-swelling alcohol was NAPL dissolution. The NAPL removal efficiency of swelling alcohol was more effective than that of non-swelling alcohol. Removal of Benzene NAPL entrapped in the soil would be effective under the cosolvent flood condition of alcohol content greater than 40% in volume.

Chlorophyll content and the expression pattern of ERF transcription factor gene in leaves and roots of wild corn under flooding treatment

  • Kim, Jung Tae;Bae, Hwan-Hee;Lee, Jin-Seok;Son, Beom-Young;Kim, SangGon;Baek, Seong-Bum
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.81-81
    • /
    • 2017
  • The origin of wild corn (teosinte) is distributed in the Northwest coastal pacific area of Central America, including Mexico, which is a wetland area of 5 to 6 months per year. Depending on these climate characteristics, wild corn is genetically resistant to flooding condition. In order to evaluate the availability of flooding resistant genes of these wild corns, we examined the physiological responses after the flooding treatment in the early stages of the growth of various wild corns. The difference of chlorophyll content between flooding untreatment and flooding treatments (untreated chlorophyll content - humidified chlorophyll content) was the highest in chlorophyll content in the case of B73, the common corn. In the middle leaf, $\underline{Zea}$ mays subsp. Parviglumis, Zea mays subsp. Mexicana, Zea mays subsp., Zea perennis decreased significantly. In the lower leaves, Zea mays sub and Zea nicaraguensis showed the lowest content compared to B73. PCR analysis was performed using 34 primers divided into two groups, top and bottom. In the wild corn, pyruvate decarboxylase 2 in root and alcohol dehydrogenase 1 in shoot showed the difference in the reaction.

  • PDF

Analysis of enzyme activity changes caused by flooding stress in upland crops (침수 스트레스에 의한 밭작물의 효소활성 변화 분석)

  • Juhyung Shin;Byeonggyu Kim;Kihwan Kim;Tae-An Kang;Won-Chan Kim
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.341-351
    • /
    • 2022
  • Among various environmental stresses, humid stress lacks mechanisms and biochemical understanding compared to drought, low temperature, and high salt stresses. The aim of this study was to investigate enzyme activity of field crops under humidity stress. Results of this study could be used as basic data for understanding humidity stress and early diagnosis. Growth and enzyme activities of sesame, perilla, red beans, sorghum, and beans as major field crops in Korea when flooded were investigated. It was confirmed that growths of both shoots and roots were retarded. In plants, anaerobic fermentation occurred due to flooding stress, which increased the activity of alcohol dehydrogenase (ADH) compared to the control group. Increases of reactive oxygen species (ROS) were also observed. All flooded plants showed increased peroxidase (POD) activity and lipid peroxidation. Their dyeing strength was darker than that of the control group, even in 3,3'-diaminobenzidine (DAB) staining. Since enzyme activity changes in plants appear relatively faster than changes in phenotype at the ground level, they could be used as biomarkers for early diagnosis of humidity stress in crops.

Controlling effect of environmentally friendly organic materials on the black rice bug, Scotinophara lurida(Hemiptera: Pentatomidae), depending on paddy flooding (논 담수 여부에 따른 유기농업자재의 먹노린재 방제 효과)

  • You Kyoung Lee;Nak-Jung Choi;Ju-Rak Lim;Jun-Yeol Choi;Bo Yoon Seo
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.463-472
    • /
    • 2023
  • The insecticidal activities of 27 different commercial products with environmentally friendly organic material(EFOM) against Scotinophara lurida, a major rice pest, were evaluated in the laboratory using spraying methods on plants and insects. Seven plant-derived organic farming materials (EFOM-8, -10, -12, -13, -19, -20, and -26) with high insecticidal effects when sprayed directly on the insect's body rather than on the plant were selected. In the indoor rice pot test, all 7 EFOMs showed an insecticidal rate of over 73.3% under flooding conditions. Notably, EFOM-13 and EFOM-20 demonstrated much higher insecticidal rates, ranging from 1.5 to 1.8 times, in flooding conditions compared to drained conditions. In the semi-paddy field test, EFOM-10 (80% garlic extract), EFOM-13 (62% neem extract), and EFOM-26 (70% sophora extract+28% ethyl alcohol+2% pyrethrum extract) exhibited a higher control value of 88.9% in the irrigated paddy on the 7th day, surpassing the control values in the drained paddy by 1.4 to 1.9 times. The control value in the irrigated rice paddy field sprayed with EFOM-10 reached 86.2% on the 7th day, which was 1.4 times higher than 61.9% in the drained paddy. Taken together, the findings suggest that direct contact of the insect's body with sufficient amounts of spray solution and the maintenance of paddy irrigation can enhance the controlling effect of EFOMs. These findings will be valuable in developing an optimal S. lurida control strategy for application in rice paddy fields in the near future.