DOI QR코드

DOI QR Code

Analysis of enzyme activity changes caused by flooding stress in upland crops

침수 스트레스에 의한 밭작물의 효소활성 변화 분석

  • Juhyung Shin (Department of Integrative Biology, Kyungpook National University) ;
  • Byeonggyu Kim (Department of Integrative Biology, Kyungpook National University) ;
  • Kihwan Kim (Department of Applied Biosciences, Kyungpook National University) ;
  • Tae-An Kang (Department of Applied Biosciences, Kyungpook National University) ;
  • Won-Chan Kim (Department of Integrative Biology, Kyungpook National University)
  • 신주형 (경북대학교 농생명융합공학과) ;
  • 김병규 (경북대학교 농생명융합공학과) ;
  • 김기환 (경북대학교 응용생명과학과) ;
  • 강태안 (경북대학교 응용생명과학과) ;
  • 김원찬 (경북대학교 농생명융합공학과)
  • Received : 2022.08.19
  • Accepted : 2022.09.20
  • Published : 2022.09.30

Abstract

Among various environmental stresses, humid stress lacks mechanisms and biochemical understanding compared to drought, low temperature, and high salt stresses. The aim of this study was to investigate enzyme activity of field crops under humidity stress. Results of this study could be used as basic data for understanding humidity stress and early diagnosis. Growth and enzyme activities of sesame, perilla, red beans, sorghum, and beans as major field crops in Korea when flooded were investigated. It was confirmed that growths of both shoots and roots were retarded. In plants, anaerobic fermentation occurred due to flooding stress, which increased the activity of alcohol dehydrogenase (ADH) compared to the control group. Increases of reactive oxygen species (ROS) were also observed. All flooded plants showed increased peroxidase (POD) activity and lipid peroxidation. Their dyeing strength was darker than that of the control group, even in 3,3'-diaminobenzidine (DAB) staining. Since enzyme activity changes in plants appear relatively faster than changes in phenotype at the ground level, they could be used as biomarkers for early diagnosis of humidity stress in crops.

다양한 환경 스트레스 중 습해 스트레스의 경우 기타 가뭄이나 저온, 고염 등에 비하여 메커니즘과 생화학적 이해가 부족한 실정이다. 본 연구는 습해 스트레스 하에서의 밭작물의 효소활성에 대하여 조사하여 습해 스트레스에 대한 이해와 조기 진단을 위한 기초자료로 활용하고자 수행하였다. 국내의 주요 밭작물인 참깨, 들깨, 팥, 수수, 콩 등을 대상으로 침수 스트레스를 주었을 시 생육도와 식물 내부의 변화에 대하여 조사하였는데, 스트레스를 받을 경우 지하부는 물론 지상부에서도 생육의 저하가 일어나는 것을 확인하였다. 식물체 내에서는 침수 스트레스에 의하여 혐기적 발효가 일어나 대조군에 비하여 ADH의 활성이 높아지는 것을 확인하였으며 스트레스를 받을 시 발생하는 ROS에 의한 변화 또한 확인하였다. 습해를 받은 식물들 모두 POD 활성과 lipid peroxidation이 증가하였고 이를 시각화한 DAB 염색에서도 염색 강도가 대조군에 비하여 진하게 염색되었다. 지상부에서 표현형의 변화보다 식물 체내의 효소활성의 변화가 비교적 빠르게 나타나므로 추후 작물들의 습해 스트레스 조기진단을 위한 생체지표로써 활용될 수 있을 것으로 사료된다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 공동연구사업(과제번호: PJ015683022021)의 지원에 의해 이루어졌다.

References

  1. Bright J, R Desikan, JT Hancock, IS Weir and SJ Neill. 2005. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J. 45:113-122. https://doi.org/10.1111/j.1365-313X.2005.02615.x
  2. Chen YJ, B Choat, F Sterck, P Maenpuen, M Katabuchi, SB Zhang, KW Tomlinson, RS Oliveira, YJ Zhang, JX Shen, KF Cao and S Jansen. 2021. Hydraulic prediction of drought-induced plant dieback and top-kill depends on leaf habit and growth form. Ecol. Lett. 24:2350-2363. https://doi.org/10.1111/ele.13856
  3. Christensen HT, Z Zhang, Y Wei and DB Collinge. 1997. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley - powdery mildew interaction. Plant J. 11:1187-1194. https://doi.org/10.1046/j.1365-313X.1997.11061187.x
  4. Chun HC, KY Jung, YD Choi, S Lee, SU Kim and E Oh. 2017a. Characterizations of yields and seed components of sesame (Sesamum indicum L.) as affected by soil moisture from paddy field cultivation. Korean J. Soil Sci. Fert. 50:369-382. https://doi.org/10.7745/KJSSF.2017.50.5.369
  5. Chun HC, KY Jung, YD Choi and S Lee. 2017b. Improved method of suitability classification for sesame (Sesamum indicum L.) cultivation in paddy field soils. Korean J. Soil Sci. Fert. 50:520-529. https://doi.org/10.7745/KJSSF.2017.50.6.520
  6. Daryanto S, L wang and PA Jacinthe. 2016. Global synthesis of drought effects on maize and wheat production. PLoS One 11:e0156362. https://doi.org/10.1371/journal.pone.0156362
  7. Dolferus R, GD Bruxelles, ES Dennis and WJ Peacock. 1994. Regulation of the Arabidopsis Adh gene by anaerobic and other environmental stresses. Ann. Bot. 74:301-308. https://doi.org/10.1006/anbo.1994.1121
  8. Farmer EE and MJ Mueller. 2013. ROS-mediated lipid peroxidation and RES-activated signaling. Annu. Rev. Plant Biol. 64:429-450. https://doi.org/10.1146/annurev -arplant-050312-120132
  9. Fernanda SF, PEM Silva, GS Gusman and JA Oliveira. 2016. When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front. Plant Sci. 7:471. https://doi.org/10.3389/fpls.2016.00471
  10. Genty B, JM Briantais and NR Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta-Gen. Subj. 990:87-92. https://doi.org/10.1016/S0304-4165(89)80016-9
  11. Hoque TS, M Uraji, W Ye, MA Hossain, Y Nakamura and Y Murata. 2012. Methylglyoxal-induced stomatal closure accompanied by peroxidase-mediated ROS production in Arabidopsis. J. Plant Physiol. 169:979-986. https://doi.org/10.1016/j.jplph.2012.02.007
  12. Jain V, NK Singla, S Jain and K Gupta. 2010. Activities of enzymes of fermentation pathways in the leaves and roots of contrasting cultivars of sorghum(Sorghum Bicolor L.) during flooding. Physiol. Mol. Biol. Plants 16:241-247. https://doi.org/10.1007/s12298-010-0025-7
  13. Jambunathan N. 2010. Determination and detection of reactive oxygen species(ROS), lipid peroxidation, and electrolyte leakage in plants. pp. 291-297. In: Methods in Molecular Biology (Sunkar R ed.). Humana Press. Totowa, NJ. https://doi.org/10.1007/978-1-60761-702-0_18
  14. Kathleen PI, R Dolferus, MD Pauw, ES Dennis and AG Good. 2003. Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiol. 132:1292-1302. https://doi.org/10.1104/pp.103.022244
  15. Lee SW, SW Kang, DY Kim, NS Seong and HW Park. 2004. Comparison of growth characteristics and compounds of ginseng cultivated by paddy and upland cultivation. Korean J. Medicinal Crop Sci. 12:10-16.
  16. Leutner S, A Eckert and WE Muller. 2001. ROS generation, lipid peroxidation and antioxidant enzyme activities in the aging brain. J. Neural Transm. 108:955-967. https://doi.org/10.1007/s007020170015
  17. Park MR, JH Lim, NH Yoo, IS Kwon, JG Kim, KG Choi and SJ Yun. 2005. Effects of hypoxia on root growth and anaerobic fermentative enzymes in winter cereal seedlings. Korean J. Crop Sci. 50:400-405.
  18. Parsons ML and LB Preskitt. 2007. A survey of epiphytic dinoflagellates from the coastal waters of the island of Hawai'i. Harmful Algae 6:658-669. https://doi.org/10.1016/j.hal.2007.01.001
  19. Roles F, E Wisse, BD Prest and JVD Meulen. 1975. Cytochemical discrimination between catalases and peroxidases using diaminobenzidine. Histochemistry 41:281-312. https://doi.org/10.1007/BF00490073
  20. Ryu HL, A Adhikari, SM Kang, YH Kim and IJ Lee. 2018. Evaluation of growth characteristics and groundwater levels for the growth and development of Sorghum (Sorghum bicolor L.) and Adzuki bean (Vigna anaularis L.). J. Agric. Life Sci. 52:13-25. https://doi.org/10.14397/jals.2018.52.6.13
  21. Sullivan M, TV Toai, N Fausey, J Beuerlein, R Parkinson and A Soboyejo. 2001. Evaluating on-farm flooding impacts on soybean. Crop Sci. 41:93-100. https://doi.org/10.2135/cropsci2001.41193x
  22. Ventura I, L Brunello, S Iacopino, MC Valeri, G Novi, T Dornbusch, P Perata and E Loreti. 2020. Arabidopsis phenotyping reveals the importance of alcohol dehydrogenase and pyruvate decarboxylase for aerobic plant growth. Sci. Rep. 10:16669. https://doi.org/10.1038/s41598-020-73704-x
  23. Yin X, S Hiraga, M Hajika, M Nishimura and S Komatsu. 2017. Transcriptomic analysis reveals the flooding tolerant mechanism in flooding tolerant line and abscisic acid treated soybean. Plant Mol. Biol. 93:479-496. https://doi.org/10.1007/s11103-016-0576-2
  24. Yoon ST, EK Je, YJ Kim, IH Jeong, TK Han, TY Kim, YS Cho and ES Yun. 2014. Survey and evaluation of paddy-upland rotation production system. J. Korean Soc. Int. Agric. 26:531-543. https://doi.org/10.12719/KSIA.2014.26.4.531