• Title/Summary/Keyword: aircraft wing

Search Result 427, Processing Time 0.024 seconds

The Applicability of Avionics Simulation Model Framework by Analyzing the Performance (항공용 시뮬레이션 모델 프레임워크 성능 분석을 통한 적용성 평가)

  • Seo, Min-gi;Cho, Yeon-je;Shin, Ju-chul;Baek, Gyong-hoon;Kim, Seong-woo
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.336-343
    • /
    • 2021
  • Avionics corresponds to the brain, nerves and five senses of an aircraft, and consists of aircraft mounted electronic equipment of communication, identification, navigation, weapon, and display systems to perform flight and missions. It occupies about 50% of the aircraft system, and its importance is increasing as the technology based on the 4th industrial revolution is developed. As the development period of the aircraft is getting shorter, it is definitely necessary to develop a stable avionics SIL in a timely manner for the integration and verification of the avionics system. In this paper, we propose a method to replace the legacy SIL with the avionics simulation model framework based one and evaluate the framework based on the result of alternative application.

Design Improvement about Abnormal Lighting of Anti-Collision Light for a Rotary-wing Aircraft (회전익 항공기 충돌방지등의 이상점등에 대한 설계 개선)

  • Kim, Young Mok;Seo, Young Jin;Lee, Yoon Woo;Lee, Joo Hyung;Choi, Doo-Hyun
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.79-86
    • /
    • 2019
  • An anti-collision light of a rotary-wing aircraft is used for the purpose of preventing collision during the operation of an aircraft and is a key component to ensure flight safety. The anti-collision lights of the Korean Utility Helicopter (KUH) consist of upper and lower lights, and the power supply of anti-collision lights mounted on the aircraft. The anti-collision light is designed as a dual structure capable of brightness control and selective lighting. During the operation after delivery of the aircraft, abnormal lighting of anti-collision light occurred. In this paper, a comprehensive review of the aircraft system and component level was conducted to solve these phenomena at first. Then, the causes of anti-collision light anomalies were analyzed and the design changes are presented. The validity of design changes has been verified through the component and aircraft system ground/flight test.

A Study on the Aileron Reversal Characteristics of CUS Composite Aircraft Wings (CUS 복합재료 항공기 날개의 에일러론 역전 특성 연구)

  • Kim, Keun-Taek;Song, Oh-Seop
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.149-159
    • /
    • 2009
  • This paper deals with an analytical study on the aileron reversal characteristics of anisotropic composite aircraft wings modelled as thin-walled beam and having extension-twist structural couplings caused by Circumferentially Uniform Stiffness (CUS) layup scheme. For a study on the aileron reversal of CUS composite wings, it is essential to consider the following effects such as extension-twist structural coupling, wing aspect ratio, and ratio of span-wise and chord-wise length of aileron to wing, initial angle of attack, and sweep angle, etc. The results on the aileron reversal could have a significant role in more efficient designs of thin-walled composite wing aircraft for which this aeroelastic instability is one of the most critical ones.

  • PDF

Battle Damage Analysis of Aircraft Wing Fuel Tanks by Hydrodynamic Ram Effect (항공기 날개 연료탱크의 수압램 전투손상 해석연구)

  • Kim, Jong-Heon;Jeon, Seung-Mun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.17-24
    • /
    • 2006
  • Hydrodynamic ram of aircraft fuel tanks is one of main ballistic battle damages of an aircraft and has great importance to airframe survivability design. Basic concept, physics and research history of hydrodynamic ram are investigated. The penetration and internal detonation of a simple fuel tank and ICW(Intermediate Complexity Wing) are analyzed by computational method. Structural rupture and fluid burst are analytically realized using general coupling and coupling surface interaction. The results such as fluid pressure, tank stress and displacement are shown and future research chances are suggested based on the study.

A Study on the Aileron Reversal Characteristics of CAS Composite Aircraft Wings (CAS 복합재료 항공기 날개의 에일러론 역전 특성 연구)

  • Song, Oh-Seop;Kim, Keun-Taek
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1192-1200
    • /
    • 2009
  • This paper deals with an analytical study on the aileron reversal characteristics of anisotropic composite aircraft wings modelled as thin-walled beam and having bending-torsion structural couplings caused by Circumferentially Asymmetric Stiffness layup scheme. For a study on the aileron reversal of CAS composite wings, it is essential to consider the following effects such as warping restraint, transverse shear flexibility, bending-twist structural coupling, wing aspect ratio, ratio of span-wise and chord-wise length of aileron to wing, and sweep angle, etc. The results on the aileron reversal could have a significant role in more efficient designs of thin-walled composite wing aircraft for which this aeroelastic instability is one of the most critical ones.

Multi-disciplinary Optimization of Composite Sandwich Structure for an Aircraft Wing Skin Using Proper Orthogonal Decomposition (적합직교분해법을 이용한 항공기 날개 스킨 복합재 샌드위치 구조의 다분야 최적화)

  • Park, Chanwoo;Kim, Young Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.535-540
    • /
    • 2019
  • The coupling between different models for MDO (Multi-disciplinary Optimization) greatly increases the complexity of the computational framework, while at the same time increasing CPU time and memory usage. To overcome these difficulties, POD (Proper Orthogonal Decomposition) and RBF (Radial Basis Function) are used to solve the optimization problem of determining the thickness of composites and sandwich cores when composite sandwich structures are used as aircraft wing skin materials. POD and RBF are used to construct surrogate models for the wing shape and the load data. Optimization is performed using the objective function and constraint function values which are obtained from the surrogate models.

Aerodynamic Analysis of an Arbitrary Three-Dimensional Blended Wing Body Aircraft using Panel Method (패널법을 이용한 임의의 3차원 BWB 형상 항공기에 대한 공력해석)

  • Lee, Sea-Wook;Yang, Jin-Yeol;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1066-1072
    • /
    • 2009
  • A panel method based on potential flow theory is developed for the steady/unsteady aerodynamic analysis of arbitrary three-dimensional Blended Wing Body aircraft. The panel method uses the piecewise constant source and doublet singularities as a solution. This potential based panel method is founded on the Dirichlet boundary condition and coupled with the time-stepping method. The present method uses the time-stepping loop to simulate the unsteady motion of the aircraft. The present method can solve the three-dimensional flow over the complex bodies with less computing time and provide various aerodynamic derivatives to secure the stability of Blended Wing Body aircraft. That will do much for practical applications such as aerodynamic designs and analysis of aircraft configurations and flight simulation.

NUMERICAL STUDY OF PROPELLER AND HIGH LIFT DEVICE AERODYNAMIC INTERFERENCES (프로펠러와 고양력 장치와의 공력간섭에 대한 수치해석 연구)

  • Park, Y.M.;Kim, C.W.;Chung, J.D.;Lee, H.C.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.47-54
    • /
    • 2011
  • A rotating propeller of turboprop aircraft gives much effect on the aerodynamic characteristics of wing such as lift, moment and stall. Specially propeller effect on the wing surface is much more dominant when aircrafts are in landing or take-off conditions. In the present paper, three dimensional Navier-Stokes simulations for the interaction of propeller and wing were carried out for medium sized turboprop aircraft. For rotating propeller, unsteady sliding mesh method was used to simulate a relative motion between moving and static bodies. For the power effect analysis in landing and take off configurations, double slotted flap was also considered and the aerodynamic characteristics were investigated. It was shown that the propeller slipstream enhanced the lift slope including maximum lift by eliminating local flow separation region and this enhancement was more dominant with high lift device.

Digital Redesign of Gust Load Alleviation System using Control Surface

  • Tak, Hyo-Sung;Ha, Cheol-Keun;Lee, Sang-Wook;Kim, Tae-Uk;Hwang, In-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.675-679
    • /
    • 2005
  • This paper deals with the problem of gust load alleviation in active control for the case that aeroelasticity takes place due to interaction between wing structure and aerodynamics on wing when aircraft meets gust during flight. Aeroservoelasticity model includes wing structure modeled in FEM, unsteady aerodynamics in minimum state approximate method, and models of actuator and sensors in state space. Based on this augmented model, digitally redesigned gust load alleviation system is designed in sampled-data control technique. From numerical simulation, this digital control system is effective to gust load on aircraft wing, which is shown in transient responses and PSD analysis to random gust inputs.

  • PDF

Increasing Endurance Performance of Tiltrotor UAV Using Extended Wing (확장날개를 이용한 틸트로터 무인기 체공성능 향상)

  • Lee, Myeong Kyu;Lee, Chi-Hoon
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.111-117
    • /
    • 2016
  • A new configuration of tiltrotor UAV previously suggested by Korea Aerospace Research Institute (KARI) for the purpose of increasing the endurance performance in airplane mode flight has extended wings attached to the nacelle and rotated with the nacelle according to the flight modes. In this research, the effectiveness of the extended wing on the enhancement of the endurance performance of KARI tiltrotor UAV (TR60) was analytically investigated based on CFD analysis results. Flight tests and ground tests of measuring the fuel consumption were also conducted to directly compare the endurance performance for the two configurations of TR60 baseline and TR60 extended-wing model.