DOI QR코드

DOI QR Code

Multi-disciplinary Optimization of Composite Sandwich Structure for an Aircraft Wing Skin Using Proper Orthogonal Decomposition

적합직교분해법을 이용한 항공기 날개 스킨 복합재 샌드위치 구조의 다분야 최적화

  • Park, Chanwoo (Department of Aerospace and Software Engineering, Gyeongsang National University) ;
  • Kim, Young Sang (Department of Aerospace and Software Engineering, Gyeongsang National University)
  • Received : 2019.03.26
  • Accepted : 2019.06.26
  • Published : 2019.07.01

Abstract

The coupling between different models for MDO (Multi-disciplinary Optimization) greatly increases the complexity of the computational framework, while at the same time increasing CPU time and memory usage. To overcome these difficulties, POD (Proper Orthogonal Decomposition) and RBF (Radial Basis Function) are used to solve the optimization problem of determining the thickness of composites and sandwich cores when composite sandwich structures are used as aircraft wing skin materials. POD and RBF are used to construct surrogate models for the wing shape and the load data. Optimization is performed using the objective function and constraint function values which are obtained from the surrogate models.

MDO(Multi-disciplinary Optimization)를 위한 서로 다른 모델 간의 결합은 계산 프레임 워크의 복잡성을 크게 증가시키는 동시에 CPU 시간과 메모리 사용을 증가시킨다. 이러한 어려움을 극복하기 위해 POD(Proper Orthogonal Decomposition)와 RBF(Radial Basis Function)를 사용하여 복합 샌드위치 구조가 항공기 날개 스킨 재료로 사용될 때 복합재와 샌드위치 코어의 두께를 결정하는 최적화 문제의 해를 구했다. POD와 RBF를 사용하여 날개 형상과 하중 데이터에 대한 대리 모델을 만들었으며 대리 모델에 의해 얻어진 목적 함수 및 제약 함수 값을 사용하여 최적해를 구하였다.

Keywords

References

  1. Joe, D. S., Yoo, J. H., Joe, C. Y., and Park, C. W., "Development of an Automated Aero-Structure Interaction System for Multidisciplinary Design Optimization for the Large AR Aircraft Wing," Journal of the Korean Society Aeronautical and Space Sciences, Vol. 38, No.7, 2010, pp. 716-726. https://doi.org/10.5139/JKSAS.2010.38.7.716
  2. Park, C. W., Chu, J. M., Shul, C. W., and Jun, S. M., "Optimization of Sandwich structures of a small aircraft wing using Automated Aero-Structure Interaction Systems," Journal of the Korean Society for Precision Engineering, Vol. 30, No. 10, 2013, pp. 1061-1068. https://doi.org/10.7736/KSPE.2013.30.10.1061
  3. Park, K. H, Jun, S. O., Cho, M. H., and Lee, D. H., "Design Optimization of Transonic Wing/Fuselage System Using Proper $0{\pi}hogonal $ Decomposition," Journal of the Korean Society Aeronautical and Space Sciences, Vol. 38, No.5, 2010, pp. 414-420. https://doi.org/10.5139/JKSAS.2010.38.5.414
  4. Park, C. R., and Lee, C. J., "Proper Orthogonal Decomposition Analysis of Flow Characteristics in Hybrid Rocket Engine," Journal of the Korean Society Aeronautical and Space Sciences, Vol. 42, No. 5, 2014, pp. 383-389. https://doi.org/10.5139/JKSAS.2014.42.5.383
  5. Iuliano, E., and Quagliarella, D., "Proper Orthogonal Decomposition, surrogate modelling and evolutionary optimization in aerodynamic design," COMPUTERS & FLUIDS, Vol. 84, 2013, pp. 327-350. https://doi.org/10.1016/j.compfluid.2013.06.007
  6. Gutmann, H. M., "A radial basis function method for global optimization," Journal of Global Optimization, Vol. 19, 2001, pp. 201-207. https://doi.org/10.1023/A:1011255519438
  7. Braconnier, T., Ferrier, M., Jouhaud, J. C., Montagnac, M., and Sagaut, P., "Towards an adaptive POD/SVD surrogate model for aeronautic design," Comput Fluids, Vol. 40, No. 1, 2011, pp. 195-209. https://doi.org/10.1016/j.compfluid.2010.09.002
  8. Rippa, S., "An algorithm for selecting a good value for the parameter c in radial basis function interpolation," Advances in Computational Mathematics, Vol. 11, 1911, pp. 193-210. https://doi.org/10.1023/A:1018975909870
  9. Simpson, T. W., Dennis, L., and Chen, W., "Sampling strategies for computer experiments: design and analysis," International Journal of Reliability and Applications, Vol. 23, No. 2, 2001, pp. 209-240.
  10. Simpson, T. W., "A concept exploration method for product family design," Ph.D Dissertation, G.W. Woodruff School of Mechanical Engineering, Georgia lnstitute Of Technology, Atlanta, GA, 1998.
  11. Hounjet, M. H. L., and Meijer, J. J., "Evaluation of elastomechanical and aerodynamic data transfer methods for non-planar configuration in computational aeroelastic analysis," National Aerospace Laboratory NLP, NLP-TP-95690 U., 1995.
  12. Carroll, David, Fortran GA-Genetic Algorithm Driver, 2001.